Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Векторное произведение векторов. Определение 6.2. Вектор с называется векторным произведениемвекторов аи b, если:



Определение 6.2. Вектор с называется векторным произведением векторов а и b, если:

1) | c | = | a||b | sinφ, где φ – угол между а и b.

2) c a, c b.

3) Тройка векторов abc является правой.

Обозначения векторного произведения: c = [ ab ], c = a b.

Свойства векторного произведения.

1) [ ba ] = - [ ab ].

Доказательство.

Вектор - с удовлетворяет первым двум условиям определения векторного произведения и образует с векторами b и а правую тройку векторов.

2) [ ab ] = 0 a b.

Доказательство. Из первого пункта определения 6.2 следует, что модуль векторного произведения ненулевых векторов равен нулю только при sinφ = 0, что соответствует коллинеарности векторов а и b.

3) Модуль векторного произведения |[ ab ]| равняется площади S параллелограмма, построенного на приведенных к общему началу векторах а и b.

Доказательство следует из первого пункта определения 6.2.

Определение 6.3. Орт еа произвольного вектора а – это вектор единичной длины, коллинеарный а и одинаково с ним направленный (| еа | = 1, еа || a).

Cледствие из свойства 3. [ ab ] = S e, где е – орт вектора [ ab ].

4) [(k a) b ] = k [ ab ].

5) [(a + b ) c ] = [ ac ] + [ bc ].

6) Если в декартовой системе координат a = {Xa, Ya, Za}, b = {Xb, Yb, Zb}, то

[ ab ] =

Доказательство.

Представим векторы а и b в виде: a = Xa i + Ya j +Za k, b = Xb i + Yb j +Zb k. Отметим, что [ ij ] = k, [ jk ] = i, [ ki ] = j, [ ii ] = [ jj ] = [ kk ] = 0. Тогда с использованием свойств 4 и 5 получим:

[(Xa i + Ya j + Za k)(Xb i + Yb j + Zb k)] =(YaZb – YbZa) i +(XbZa – XaZb) j + (XaYb – XbYa) k, что доказывает свойство 6.

Пример. Вычислим векторное произведение векторов а = {3, -4, 2} и b = {1, 5, 1}.

[ ab ] = ={-14, -1, 19}.





Дата публикования: 2014-11-28; Прочитано: 303 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...