Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Идеология программирования и функционирования узлов процессора 1 страница



Основная функция любого процессора, ради которой он и создается, — это выполнение команд. Система команд, выполняемых процессором, представляет собой нечто подобное таблице истинности логических элементов или таблице режимов работы более сложных логических микросхем. То есть она определяет логику работы процессора и его реакцию на те или иные комбинации внешних событий. Написание программ для микропроцессорной системы — важнейший и часто наиболее трудоемкий этап разработки такой системы. А для создания эффективных программ необходимо иметь хотя бы самое общее представление о системе команд используемого процессора. Самые компактные и быстрые программы и подпрограммы создаются на языке Ассемблер, использование которого без знания системы команд абсолютно невозможно, ведь язык Ассемблер представляет собой символьную запись цифровых кодов машинного языка, кодов команд процессора. Конечно, для разработки программного обеспечения существуют всевозможные программные средства. Пользоваться ими обычно можно и без знания системы команд процессора. Чаще всего применяются языки программирования высокого уровня, такие как Паскаль и Си. Однако знание системы команд и языка Ассемблер позволяет в несколько раз повысить эффективность некоторых наиболее важных частей программного обеспечения любой микропроцессорной системы — от микроконтроллера до персонального компьютера.

Каждая команда, выбираемая (читаемая) из памяти процессором, определяет алгоритм поведения процессора на ближайшие несколько тактов. Код команды говорит о том, какую операцию предстоит выполнить процессору и с какими операндами (то есть кодами данных), где взять исходную информацию для выполнения команды и куда поместить результат (если необходимо). Код команды может занимать от одного до нескольких байт, причем процессор узнает о том, сколько байт команды ему надо читать, из первого прочитанного им байта или слова. В процессоре код команды расшифровывается и преобразуется в набор микроопераций, выполняемых отдельными узлами процессора. Но разработчику микропроцессорных систем это знание не слишком важно, ему важен только результат выполнения той или иной команды.

3.1. Адресация операндов

Большая часть команд процессора работает с кодами данных (операндами). Одни команды требуют входных операндов (одного или двух), другие выдают выходные операнды (чаще один операнд). Входные операнды называются еще операндами-источниками, а выходные называются операндами-приемниками. Все эти коды операндов (входные и выходные) должны где-то располагаться. Они могут находиться во внутренних регистрах процессора (наиболее удобный и быстрый вариант). Они могут располагаться в системной памяти (самый распространенный вариант). Наконец, они могут находиться в устройствах ввода/вывода (наиболее редкий случай). Определение места положения операндов производится кодом команды. Причем существуют разные методы, с помощью которых код команды может определить, откуда брать входной операнд и куда помещать выходной операнд. Эти методы называются методами адресации. Эффективность выбранных методов адресации во многом определяет эффективность работы всего процессора в целом.

Количество методов адресации в различных процессорах может быть от 4 до 16. Рассмотрим несколько типичных методов адресации операндов, используемых сейчас в большинстве микропроцессоров.

Непосредственная адресация (рис. 3.1) предполагает, что операнд (входной) находится в памяти непосредственно за кодом команды. Операнд обычно представляет собой константу, которую надо куда-то переслать, к чему-то прибавить и т.д. Например, команда может состоять в том, чтобы прибавить число 6 к содержимому какого-то внутреннего регистра процессора. Это число 6 будет располагаться в памяти, внутри программы в адресе, следующем за кодом данной команды сложения.

Рис. 3.1. Непосредственная адресация.

Прямая (она же абсолютная) адресация (рис. 3.2) предполагает, что операнд (входной или выходной) находится в памяти по адресу, код которого находится внутри программы сразу же за кодом команды. Например, команда может состоять в том, чтобы очистить (сделать нулевым) содержимое ячейки памяти с адресом 1000000. Код этого адреса 1000000 будет располагаться в памяти, внутри программы в следующем адресе за кодом данной команды очистки.

Рис. 3.2. Прямая адресация.

Регистровая адресация (рис. 3.3) предполагает, что операнд (входной или выходной) находится во внутреннем регистре процессора. Например, команда может состоять в том, чтобы переслать число из нулевого регистра в первый. Номера обоих регистров (0 и 1) будут определяться кодом команды пересылки.

Косвенно-регистровая (она же косвенная) адресация предполагает, что во внутреннем регистре процессора находится не сам операнд, а его адрес в памяти (рис. 3.4). Например, команда может состоять в том, чтобы очистить ячейку памяти с адресом, находящимся в нулевом регистре. Номер этого регистра (0) будет определяться кодом команды очистки.

Рис. 3.3. Регистровая адресация.

Рис. 3.4. Косвенная адресация.

Из других распространенных методов адресации можно упомянуть об автоинкрементной адресации и автодекрементной адресации, с которыми можно ознакомиться в [1].

Выбор того или иного метода адресации в значительной степени определяет время выполнения команды. Самая быстрая адресация — это регистровая, так как она не требует дополнительных циклов обмена по магистрали. Если же адресация требует обращения к памяти, то время выполнения команды будет увеличиваться за счет длительности необходимых циклов обращения к памяти. Понятно, что чем больше внутренних регистров у процессора, тем чаще и свободнее можно применять регистровую адресацию, и тем быстрее будет работать система в целом.

Говоря об адресации, нельзя обойти вопрос о сегментировании памяти, применяемой в некоторых процессорах, например в процессорах IBM PC-совместимых персональных компьютеров, и увеличивающей их быстродействие.

В процессоре Intel 8086 сегментирование памяти организовано следующим образом.

Вся память системы представляется не в виде непрерывного пространства, а в виде нескольких кусков — сегментов заданного размера (по 64 Кбайта), положение которых в пространстве памяти можно изменять программным путем.

Для хранения кодов адресов памяти используются не отдельные регистры, а пары регистров:

- сегментный регистр определяет адрес начала сегмента (то есть положение сегмента в памяти);

- регистр указателя (регистр смещения) определяет положение рабочего адреса внутри сегмента.

При этом физический 20-разрядный адрес памяти, выставляемый на внешнюю шину адреса, образуется так, как показано на рис. 3.5, то есть путем сложения смещения и адреса сегмента со сдвигом на 4 бита. Положение этого адреса в памяти показано на рис. 3.6. Сегмент может начинаться только на 16-байтной границе памяти (так как адрес начала сегмента, по сути, имеет четыре младших нулевых разряда, как видно из рис. 3.5), то есть с адреса, кратного 16. Эти допустимые границы сегментов называются границами параграфов.

Введение сегментирования, прежде всего, связано с тем, что внутренние регистры процессора 16-разрядные, а физический адрес памяти 20-разрядный (16-разрядный адрес позволяет использовать память только в 64 Кбайт, что явно недостаточно). В появившемся в то же время процессоре MC68000 фирмы Motorola внутренние регистры 32-разрядные, поэтому там проблемы сегментирования памяти не возникает.

Рис. 3.5. Формирование физического адреса памяти из адреса сегмента и смещения.

Рис. 3.6. Физический адрес в сегменте (все коды — шестнадцатеричные).

Существуют и более сложные методы сегментирования памяти, например, в процессорах Intel 80286, Intel 80386 в так называемом защищенном режиме адрес памяти [1].

В любом случае сегментирование позволяет выделить в памяти один или несколько сегментов для данных и один или несколько сегментов для программ. Переход от одного сегмента к другому сводится всего лишь к изменению содержимого сегментного регистра. Иногда это бывает очень удобно. Но для программиста работать с сегментированной памятью обычно сложнее, чем с непрерывной, несегментированной памятью, так как приходится следить за границами сегментов, за их описанием, переключением и т.д.

Многие процессоры, имеющие разрядность 16 или 32, способны адресовать не только целое слово в памяти (16-разрядное или 32-разрядное), но и отдельные байты. Каждому байту в каждом слове при этом отводится свой адрес. Так, в случае 16-разрядных процессоров все слова в памяти (16-разрядные) имеют четные адреса. А байты, входящие в эти слова, могут иметь как четные адреса, так и нечетные.

Например, пусть 16-разрядная ячейка памяти имеет адрес 23420, и в ней хранится код 2А5Е (рис. 3.7).

При обращении к целому слову (с содержимым 2А5Е) процессор выставляет адрес 23420. При обращении к младшему байту этой ячейки (с содержимым 5Е) процессор выставляет тот же самый адрес 23420, но использует команду, адресующую байт, а не слово. При обращении к старшему байту этой же ячейки (с содержимым 2А) процессор выставляет адрес 23421 и использует команду, адресующую байт. Следующая по порядку 16-разрядная ячейка памяти с содержимым 487F будет иметь адрес 23422, то есть опять же четный. Ее байты будут иметь адреса 23422 и 23423.

Рис. 3.7. Адресация слов и байтов.

Для различия байтовых и словных циклов обмена на магистрали в шине управления предусматривается специальный сигнал байтового обмена. Для работы с байтами в систему команд процессора вводятся специальные команды или предусматриваются методы байтовой адресации.

3.2. Регистры процессора

Внутренние регистры процессора представляют собой сверхоперативную память небольшого размера, которая предназначена для временного хранения служебной информации или данных. Количество регистров в разных процессорах может быть от 6—8 до нескольких десятков. Регистры могут быть универсальными и специализированными. Специализированные регистры, которые присутствуют в большинстве процессоров, — это регистр-счетчик команд, регистр состояния (PSW), регистр указателя стека. Остальные регистры процессора могут быть как универсальными, так и специализированными.

Например, в 16-разрядном процессоре Т-11 фирмы DEC было 8 регистров общего назначения (РОН) и один регистр состояния. Все регистры имели по 16 разрядов. Из регистров общего назначения один отводился под счетчик команд, другой — под указатель стека. Все остальные регистры общего назначения полностью взаимозаменяемы, то есть имеют универсальное назначение, могут хранить как данные, так и адреса (указатели), индексы и т.д. Максимально допустимый объем памяти для данного процессора составлял 64 Кбайт (адрес памяти 16-разрядный).

В 16-разрядном процессоре MC68000 фирмы Motorola было 19 регистров: 16-разрядный регистр состояния, 32-разрядный регистр счетчика команд, 9 регистров адреса (32-разрядных) и 8 регистров данных (32-разрядных). Два регистра адреса отведены под указатели стека. Максимально допустимый объем адресуемой памяти — 16 Мбайт (внешняя шина адреса 24-разрядная). Все 8 регистров данных взаимозаменяемы. 7 регистров адреса - тоже взаимозаменяемы.

В 16-разрядном процессоре Intel 8086, который стал базовым в линии процессоров, используемых в персональных компьютерах, реализован принципиально другой подход. Каждый регистр этого процессора имеет свое особое назначение, и заменять друг друга регистры могут только частично или же не могут вообще. Остановимся на особенностях этого процессора подробнее.

Во многих процессорах выделяется специальный регистр, называемый аккумулятором (то есть накопителем). При этом, как правило, только этот регистр-аккумулятор может участвовать во всех операциях, только через него может производиться взаимодействие с устройствами ввода/вывода. Иногда в него же помещается результат любой выполненной команды (в этом случае говорят даже об аккумуляторной архитектуре процессора). Например, в процессоре 8086 регистр данных АХ можно считать своеобразным аккумулятором, так как именно он обязательно участвует в командах умножения и деления, а также только через него можно пересылать данные в устройство ввода/вывода и из устройства ввода/вывода. Выделение специального регистра-аккумулятора упрощает структуру процессора и ускоряет пересылки кодов внутри процессора, но в некоторых случаях замедляет работу системы в целом, так как весь поток информации должен пройти через один регистр-аккумулятор. В случае, когда несколько регистров процессора полностью взаимозаменяемы, таких проблем не возникает.

3.3. Система команд процессора

В общем случае система команд процессора включает в себя следующие четыре основные группы команд:

- команды пересылки данных;

- арифметические команды;

- логические команды;

- команды переходов.

Команды пересылки данных не требуют выполнения никаких операций над операндами. Операнды просто пересылаются (точнее, копируются) из источника (Source) в приемник (Destination). Источником и приемником могут быть внутренние регистры процессора, ячейки памяти или устройства ввода/вывода. АЛУ в данном случае не используется.

Арифметические команды выполняют операции сложения, вычитания, умножения, деления, увеличения на единицу (инкрементирования), уменьшения на единицу (декрементирования) и т. д. Этим командам требуется один или два входных операнда. Формируют команды один выходной операнд.

Логические команды производят над операндами логические операции, например, логическое И, логическое ИЛИ, исключающее ИЛИ, очистку, инверсию, разнообразные сдвиги (вправо, влево, арифметический сдвиг, циклический сдвиг). Этим командам, как и арифметическим, требуется один или два входных операнда, и формируют они один выходной операнд.

Наконец, команды переходов предназначены для изменения обычного порядка последовательного выполнения команд. С их помощью организуются переходы на подпрограммы и возвраты из них, всевозможные циклы, ветвления программ, пропуски фрагментов программ и т.д. Команды переходов всегда меняют содержимое счетчика команд. Переходы могут быть условными и безусловными. Именно эти команды позволяют строить сложные алгоритмы обработки информации.

В соответствии с результатом каждой выполненной команды устанавливаются или очищаются биты регистра состояния процессора (PSW). Но надо помнить, что не все команды изменяют все имеющиеся в PSW флаги. Это определяется особенностями каждого конкретного процессора. У разных процессоров системы команд существенно различаются, но в основе своей они очень похожи. Количество команд у процессоров также различно. Например, у упоминавшегося уже процессора МС68000 всего 61 команда, а у процессора 8086 — 133 команды. У современных мощных процессоров количество команд достигает нескольких сотен. В то же время существуют процессоры с сокращенным набором команд (так называемые RISC-процессоры), в которых за счет максимального сокращения количества команд достигается увеличение эффективности и скорости их выполнения.

Рассмотрим кратко содержание и особенности четырех выделенных групп команд процессора.

Команды пересылки данных занимают очень важное место в системе команд любого процессора. Они выполняют следующие важнейшие функции:

- загрузка (запись) содержимого во внутренние регистры процессора;

- сохранение в памяти содержимого внутренних регистров процессора;

- копирование содержимого из одной области памяти в другую;

- запись в устройства ввода/вывода и чтение из устройств ввода/вывода.

В некоторых процессорах (например, Т-11) все эти функции выполняются одной единственной командой MOV (для байтовых пересылок — MOVB) но с различными методами адресации операндов. В других процессорах помимо команды MOV имеется еще несколько команд для выполнения перечисленных функций.

Арифметические команды рассматривают коды операндов как числовые двоичные или двоично-десятичные коды. Эти команды могут быть разделены на пять основных групп:

- команды операций с фиксированной запятой (сложение, вычитание, умножение, деление);

- команды операций с плавающей запятой (сложение, вычитание, умножение, деление);

- команды очистки;

- команды инкремента и декремента;

- команда сравнения.

Команды операций с фиксированной запятой работают с кодами в регистрах процессора или в памяти как с обычными двоичными кодами. Команда сложения (ADD) вычисляет сумму двух кодов. Команда вычитания (SUB) вычисляет разность двух кодов. Команда умножения (MUL) вычисляет произведение двух кодов (разрядность результата вдвое больше разрядности сомножителей). Команда деления (DIV) вычисляет частное от деления одного кода на другой. Причем все эти команды могут работать как с числами со знаком, так и с числами без знака.

Команды операций с плавающей запятой (точкой) используют формат представления чисел с порядком и мантиссой (обычно эти числа занимают две последовательные ячейки памяти). В современных мощных процессорах набор команд с плавающей запятой не ограничивается только четырьмя арифметическими действиями, а содержит и множество других более сложных команд, например, вычисление тригонометрических функций, логарифмических функций, а также сложных функций, необходимых при обработке звука и изображения.

Команды очистки (CLR) предназначены для записи нулевого кода в регистр или ячейку памяти. Эти команды могут быть заменены командами пересылки нулевого кода, но специальные команды очистки обычно выполняются быстрее, чем команды пересылки. Команды очистки иногда относят к группе логических команд, но суть их от этого не меняется.

Команды инкремента (увеличения на единицу, INC) и декремента (уменьшения на единицу, DEC) также бывают очень удобны. Их можно в принципе заменить командами суммирования с единицей или вычитания единицы, но инкремент и декремент выполняются быстрее, чем суммирование и вычитание. Эти команды требуют одного входного операнда, который одновременно является и выходным операндом.

Наконец, команда сравнения (обозначается CMP) предназначена для сравнения двух входных операндов. По сути, она вычисляет разность этих двух операндов, но выходного операнда не формирует, а всего лишь изменяет биты в регистре состояния процессора (PSW) по результату этого вычитания. Следующая за командой сравнения команда (обычно это команда перехода) будет анализировать биты в регистре состояния процессора и выполнять действия в зависимости от их значений (о командах перехода речь идет в разделе 3.3.4). В некоторых процессорах предусмотрены команды цепочечного сравнения двух последовательностей операндов, находящихся в памяти (например, в процессоре 8086 и совместимых с ним).

Логические команды выполняют над операндами логические (побитовые) операции, то есть они рассматривают коды операндов не как единое число, а как набор отдельных битов. Этим они отличаются от арифметических команд. Логические команды выполняют следующие основные операции:

- логическое И, логическое ИЛИ, сложение по модулю 2 (Исключающее ИЛИ);

- логические, арифметические и циклические сдвиги;

- проверка битов и операндов;

- установка и очистка битов (флагов) регистра состояния процессора (PSW).

Команды логических операций позволяют побитно вычислять основные логические функции от двух входных операндов. Кроме того, операция И (AND) используется для принудительной очистки заданных битов (в качестве одного из операндов при этом используется код маски, в котором разряды, требующие очистки, установлены в нуль). Операция ИЛИ (OR) применяется для принудительной установки заданных битов (в качестве одного из операндов при этом используется код маски, в котором разряды, требующие установки в единицу, равны единице). Операция Исключающее ИЛИ (XOR) используется для инверсии заданных битов (в качестве одного из операндов при этом применяется код маски, в котором биты, подлежащие инверсии, установлены в единицу). Команды требуют двух входных операндов и формируют один выходной операнд.

Команды сдвигов позволяют побитно сдвигать код операнда вправо (в сторону младших разрядов) или влево (в сторону старших разрядов). Тип сдвига (логический, арифметический или циклический) определяет, каково будет новое значение старшего бита (при сдвиге вправо) или младшего бита (при сдвиге влево), а также определяет, будет ли где-то сохранено прежнее значение старшего бита (при сдвиге влево) или младшего бита (при сдвиге вправо). Например, при логическом сдвиге вправо в старшем разряде кода операнда устанавливается нуль, а младший разряд записывается в качестве флага переноса в регистр состояния процессора. А при арифметическом сдвиге вправо значение старшего разряда сохраняется прежним (нулем или единицей), младший разряд также записывается в качестве флага переноса.

Циклические сдвиги позволяют сдвигать биты кода операнда по кругу (по часовой стрелке при сдвиге вправо или против часовой стрелки при сдвиге влево). При этом в кольцо сдвига может входить или не входить флаг переноса. В бит флага переноса (если он используется) записывается значение старшего бита при циклическом сдвиге влево и младшего бита при циклическом сдвиге вправо. Соответственно, значение бита флага переноса будет переписываться в младший разряд при циклическом сдвиге влево и в старший разряд при циклическом сдвиге вправо.

Команды проверки битов и операндов предназначены для установки или очистки битов регистра состояния процессора в зависимости от значения выбранных битов или всего операнда в целом. Выходного операнда команды не формируют. Команда проверки операнда (TST) проверяет весь код операнда в целом на равенство нулю и на знак (на значение старшего бита), она требует только одного входного операнда. Команда проверки бита (BIT) проверяет только отдельные биты, для выбора которых в качестве второго операнда используется код маски. В коде маски проверяемым битам основного операнда должны соответствовать единичные разряды.

Команды установки и очистки битов регистра состояния процессора (то есть флагов) позволяют установить или очистить любой флаг, что бывает очень удобно. Каждому флагу обычно соответствуют две команды, одна из которых устанавливает его в единицу, а другая сбрасывает в нуль. Например, флагу переноса C (от Carry) будут соответствовать команды CLC (очистка) и SEC или STC (установка).

Команды переходов предназначены для организации всевозможных циклов, ветвлений, вызовов подпрограмм и т.д., то есть они нарушают последовательный ход выполнения программы. Эти команды записывают в регистр-счетчик команд новое значение и тем самым вызывают переход процессора не к следующей по порядку команде, а к любой другой команде в памяти программ. Некоторые команды переходов предусматривают в дальнейшем возврат назад, в точку, из которой был сделан переход, другие не предусматривают этого. Если возврат предусмотрен, то текущие параметры процессора сохраняются в стеке. Если возврат не предусмотрен, то текущие параметры процессора не сохраняются.

Команды переходов без возврата делятся на две группы:

- команды безусловных переходов;

- команды условных переходов.

В обозначениях этих команд используются слова Branch (ветвление) и Jump (прыжок).

Команды безусловных переходов вызывают переход в новый адрес независимо ни от чего. Они могут вызывать переход на указанную величину смещения (вперед или назад) или же на указанный адрес памяти. Величина смещения или новое значение адреса указываются в качестве входного операнда.

Команды условных переходов вызывают переход не всегда, а только при выполнении заданных условий. В качестве таких условий обычно выступают значения флагов в регистре состояния процессора (PSW). То есть условием перехода является результат предыдущей операции, меняющей значения флагов. Всего таких условий перехода может быть от 4 до 16. Несколько примеров команд условных переходов:

- переход, если равно нулю;

- переход, если не равно нулю;

- переход, если есть переполнение;

- переход, если нет переполнения;

- переход, если больше нуля;

- переход, если меньше или равно нулю.

Особое место среди команд перехода с возвратом занимают команды прерываний (распространенное название — INT). Эти команды в качестве входного операнда требуют номер прерывания (адрес вектора). Обслуживание таких переходов осуществляется точно так же, как и аппаратных прерываний. То есть для выполнения данного перехода процессор обращается к таблице векторов прерываний и получает из нее по номеру прерывания адрес памяти, в который ему необходимо перейти. Адрес вызова прерывания и содержимое регистра состояния процессора (PSW) сохраняются в стеке. Сохранение PSW — важное отличие команд прерывания от команд переходов с возвратом.

Команды прерываний во многих случаях оказываются удобнее, чем обычные команды переходов с возвратом. Сформировать таблицу векторов прерываний можно один раз, а потом уже обращаться к ней по мере необходимости. Номер прерывания соответствует номеру подпрограммы, то есть номеру функции, выполняемой подпрограммой. Поэтому команды прерывания гораздо чаще включаются в системы команд процессоров, чем обычные команды переходов с возвратом.

Для возврата из подпрограммы, вызванной командой прерывания, используется команда возврата из прерывания (IRET или RTI). Эта команда извлекает из стека сохраненное там значение счетчика команд и регистра состояния процессора (PSW).

В данном разделе мы рассмотрели только основные команды, наиболее часто встречающиеся в процессорах. У конкретных процессоров могут быть и многие другие команды, не относящиеся к перечисленным группам команд. Но изучать их надо уже после того, как выбран тип процессора, подходящий для задачи, решаемой данной микропроцессорной системой. Подробнее о программировании изложено в [1].

3.4. Быстродействие процессора

Быстродействие процессора — это одна из важнейших его характеристик, определяющая эффективность работы всей микропроцессорной системы в целом. Быстродействие процессора зависит от множества факторов, что затрудняет сравнение быстродействия даже разных процессоров внутри одного семейства, не говоря уже о процессорах разных фирм и разного назначения.

Прежде всего, быстродействие зависит от тактовой частоты процессора. Все операции внутри процессора выполняются синхронно, тактируются единым тактовым сигналом. Понятно, что чем больше тактовая частота, тем быстрее работает процессор, причем, например, двукратное увеличение тактовой частоты какого-то процессора снижает вдвое время выполнения команд этим процессором.

Однако надо учитывать, что разные процессоры выполняют одинаковые команды за разное количество тактов, причем количество тактов, затрачиваемых на команду, может изменяться от одного такта до десятков или даже сотен. В некоторых процессорах за счет распараллеливания микроопераций на команду тратится даже меньше одного такта.

Количество тактов, затрачиваемых на выполнение команды, зависит от сложности этой команды и от методов адресации операндов. Например, быстрее всего (за меньшее число тактов) выполняются команды пересылки данных между внутренними регистрами процессора. Медленнее всего (за большое число тактов) выполняются сложные арифметические команды с плавающей запятой, операнды которых хранятся в памяти.

Первоначально для количественной оценки производительности процессоров применялась единица измерения MIPS (Mega Instruction Per Second), соответствовавшая количеству миллионов выполняемых инструкций (команд) за секунду. Естественно, изготовители микропроцессоров старались ориентироваться на самые быстрые команды. Понятно, что подобный показатель не слишком удачен. Для измерения производительности при выполнении вычислений с плавающей запятой (точкой) чуть позже была предложена единица FLOPS (Floating point Operations Per Second), но она по определению узкоспециальная, так как в некоторых системах операции с плавающей запятой просто не используются.

Другой аналогичный показатель быстродействия процессора — время выполнения коротких (быстрых) операций. Для примера в таблице 3.1 представлены показатели быстродействия нескольких 8-разрядных и 16-разрядных процессоров. В настоящее время этот показатель практически не используется, как и MIPS.





Дата публикования: 2014-11-04; Прочитано: 480 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.016 с)...