Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Приборостроения и Информатики 3 страница



- при синхронном обмене процессор заканчивает обмен данными самостоятельно, через раз и навсегда установленный временной интервал выдержки tвыд), то есть без учета интересов устройства - исполнителя;

- при асинхронном обмене процессор заканчивает обмен только тогда, когда устройство-исполнитель подтверждает выполнение операции специальным сигналом (так называемый режим handshake — рукопожатие).

Рис. 2.2. Синхронный обмен и асинхронный обмен

Достоинства синхронного обмена — более простой протокол обмена, меньшее количество управляющих сигналов. Недостатки — отсутствие гарантии, что исполнитель выполнил требуемую операцию, а также высокие требования к быстродействию исполнителя. Достоинства асинхронного обмена — более надежная пересылка данных, возможность работы с самыми разными по быстродействию исполнителями. Недостаток — необходимость формирования сигнала подтверждения всеми исполнителями, то есть дополнительные аппаратурные затраты.

Какой тип обмена быстрее, синхронный или асинхронный? Ответ на этот вопрос неоднозначен. С одной стороны, при асинхронном обмене требуется какое-то время на выработку, передачу дополнительного сигнала и на его обработку процессором. С другой стороны, при синхронном обмене приходится искусственно увеличивать длительность строба обмена для соответствия требованиям большего числа исполнителей, чтобы они успевали обмениваться информацией в темпе процессора. Поэтому иногда в магистрали предусматривают возможность как синхронного, так и асинхронного обмена, причем синхронный обмен является основным и довольно быстрым, а асинхронный применяется только для медленных исполнителей.

2.3. Циклы обмена информацией

2.3.1. Циклы программного обмена

Рассмотрим для примера случай программного обмена по мультиплексированной асинхронной магистрали Q-bus, предложенной фирмой DEC и широко применявшейся в микрокомпьютерах и промышленных контроллерах. Упрощенные временные диаграммы циклов чтения (ввода) и записи (вывода) по этой магистрали приведены на рис. 2.3 и 2.4.

Отметим, что в дальнейшем тексте знак минус перед названием сигнала говорит о том, что активный уровень сигнала низкий, пассивный — высокий, то есть сигнал отрицательный. Если минуса перед названием сигнала нет, то сигнал положительный, его низкий уровень пассивный, а высокий — активный.

На шине адреса/данных (AD) в начале цикла обмена (в фазе адреса) процессор (задатчик) выставляет код адреса. На этой шине используется отрицательная логика. Средний уровень сигналов на шине AD обозначает, что состояния сигналов на шине в данные временные интервалы не важны. Для стробирования адреса используется отрицательный синхросигнал -SYNC, выставляемый также процессором. Его передний (отрицательный) фронт соответствует действительности кода адреса на шине AD. Фаза адреса одинакова в обоих циклах записи и чтения.

Рис. 2.3. Цикл чтения на магистрали Q-bus.

Получив (распознав) свой код адреса, устройство ввода/вывода или память (исполнитель) готовится к проведению обмена. Через некоторое время после начала (отрицательного фронта) сигнала -SYNC процессор снимает адрес и начинает фазу данных.

Рис. 2.4. Цикл записи на магистрали Q-bus.

В фазе данных цикла чтения (рис. 2.3) процессор выставляет сигнал строба чтения данных -DIN, в ответ на который устройство, к которому обращается процессор (исполнитель), должно выставить свой код данных (читаемые данные). Одновременно это устройство должно подтвердить выполнение операции сигналом подтверждения обмена -RPLY. Для сигнала -RPLY используется тип выходного каскада ОК, чтобы не было конфликтов между устройствами-исполнителями. Процессор, получив сигнал -RPLY, заканчивает цикл обмена. Для этого он снимает сигнал -DIN и сигнал -SYNC. Устройство-исполнитель в ответ на снятие сигнала -DIN должно снять код данных с шины AD и закончить сигнал подтверждения -RPLY. После этого процессор снимает сигнал -SYNC.

В фазе данных цикла записи (рис. 2.4) процессор выставляет на шину AD код записываемых данных и сопровождает его отрицательным сигналом строба записи данных -DOUT. Устройство-исполнитель должно по этому сигналу принять данные от процессора и сформировать сигнал подтверждения обмена -RPLY. Процессор, получив сигнал -RPLY, заканчивает цикл обмена. Для этого он снимает код данных с шины AD и сигнал -DOUT. Устройство-исполнитель в ответ на снятие сигнала -DOUT должно закончить сигнал подтверждения -RPLY. После этого процессор снимает сигнал -SYNC.

То есть на данной магистрали адрес передается синхронно (без подтверждения его получения исполнителем), а данные передаются асинхронно, с обязательным подтверждением их выдачи или приема исполнителем. Отсутствие сигнала подтверждения -RPLY в течение заданного времени воспринимается процессором как аварийная ситуация. В принципе возможна и асинхронная передача адреса, что увеличивает надежность обмена, хотя может снижать его скорость.

Помимо циклов чтения и записи на магистрали Q-bus используются также и циклы типа ввод-пауза-вывод (чтение-модификация-запись). Упрощенная временная диаграмма этого цикла представлена на рис. 2.5.

Рис. 2.5. Цикл ввод-пауза-вывод на магистрали Q-bus.

В этом цикле адресная фаза производится точно так же, как и в циклах чтения (ввода) и записи (вывода). Но в фазе данных процессор производит сначала чтение из заданного в адресной фазе адреса, а потом запись в тот же самый адрес. Для чтения используется строб чтения -DIN, а для записи - строб записи -DOUT. В ответ на сигнал -DIN устройство-исполнитель выдает свои данные на шину AD, а по сигналу -DOUT - принимает данные с шины AD. Как и в циклах чтения и записи, устройство-исполнитель подтверждает выполнение каждой операции сигналом подтверждения -RPLY. Понятно, что цикл ввод-пауза-вывод требует больше времени, чем каждый из циклов чтения или записи, но меньше времени, чем два последовательно произведенных цикла чтения и записи (так как для него нужна только одна адресная фаза). Сигнал -SYNC вырабатывается процессором в начале цикла ввод-пауза-вывод и держится до окончания всего цикла.

Существуют другие типы программного обмена, например, циклы обмена на синхронной немультиплексированной магистрали ISA (Industrial Standard Architecture), предложенной фирмой IBM и широко используемой в персональных компьютерах. Описание временных диаграмм и принципа работы магистрали ISA приведены в [1].

Принципиальное отличие асинхронного обмена по магистрали ISA от асинхронного обмена по магистрали Q-bus состоит в следующем. Если в случае Q-bus сигнал подтверждения обязателен, и его должен формировать каждый исполнитель, то в случае ISA сигнал о неготовности исполнитель может не формировать, если он успевает работать в темпе процессора. Зато в случае Q-bus к концу цикла обмена процессор всегда уверен, что устройство-исполнитель выполнило требуемую операцию, а в случае ISA такой уверенности нет.

2.3.2. Циклы обмена по прерываниям

Циклы обмена в режиме прерываний строятся по тем же принципам, что и циклы программного обмена, но имеют ряд специфических особенностей. Дело в том, что прерываний в микропроцессорной системе обычно бывает много. Поэтому процессору необходима информация о номере (или, как еще говорят, об адресе вектора) конкретного прерывания. Эта информация может быть передана процессору двумя путями.

Прерывания в микропроцессорных системах бывают двух основных типов:

- векторные прерывания, которые требуют проведения цикла чтения по магистрали;

- радиальные прерывания, которые не требуют никакого цикла обмена по магистрали.

При векторном прерывании код номера прерывания передается процессору тем устройством ввода/вывода, которое данное прерывание запросило. Для этого процессор проводит цикл чтения по магистрали, и по шине данных получает код номера прерывания. Шина адреса в данном цикле обычно не используется, так как устройство, запросившее прерывание, и так знает, что процессор будет обращаться именно к нему. В этом случае в магистрали достаточно всего одной линии запроса прерывания для всех устройств ввода/вывода. Так организованы прерывания, например, в магистрали Q-bus.

Рис. 2.6. Сигналы запроса и предоставления прерывания в магистрали Q-bus.

Схема распространения сигналов, участвующих в прерываниях на магистрали Q-bus, показана на рис. 2.6. Упрощенная временная диаграмма цикла запроса и предоставления магистрали представлена на рис. 2.7.

Рис. 2.7. Цикл запроса/предоставления векторного прерывания на магистрали Q-bus.

Запрос прерывания осуществляется отрицательным сигналом -VIRQ, который может формироваться каждым из устройств, запрашивающих прерывание. Тип выходного каскада для этого сигнала — ОК, чтобы избежать конфликтов между запрашивающими прерывания устройствами. Получив сигнал -VIRQ, процессор предоставляет прерывание (закончив предварительно выполнение текущей команды). Для этого он выставляет сигнал чтения данных -DIN и сигнал предоставления прерывания IAKO. Этот сигнал IAKO последовательно проходит через все устройства, которые могут запрашивать прерывания. Если устройство запросило прерывание, то оно не пропускает через себя этот сигнал. В результате получается, что если прерывания одновременно запросили два или более устройств, то сигнал предоставления прерывания получит только одно устройство, а именно то, которое ближе к процессору. Такой механизм разрешения конфликтов называется иногда географическим приоритетом (или цепочечным приоритетом, Daisy Chain). Получив сигнал IAKO, устройство, запросившее прерывание, должно снять свой сигнал -VIRQ.

Затем процессор проводит цикл безадресного чтения номера прерывания. В ответ на полученные сигналы -DIN и IAKO устройство, которому предоставлено прерывание, должно выдать на шину адреса/данных AD код номера прерывания (адреса вектора прерывания) и выставить сигнал подтверждения -RPLY. Процессор читает код номера прерывания и заканчивает цикл безадресного чтения снятием сигналов -DIN и IAKO.

Рис. 2.8.Структура связей для организации радиальных прерываний на магистрали ISA.

При радиальном прерывании в магистрали имеется столько линий запроса прерывания, сколько всего может быть разных прерываний. То есть каждое устройство ввода/вывода, желающее использовать прерывание, подает сигнал запроса прерывания по своей отдельной линии. Процессор узнает о номере прерывания по номеру линии, по которой пришел сигнал запроса прерывания. Никаких циклов обмена по магистрали при этом не требуется. В случае радиальных прерываний в систему обычно включается дополнительная микросхема контроллера прерываний, обрабатывающая сигналы запросов прерываний. Именно так организованы прерывания, например, в магистрали ISA.

Упрощенная структура связей между устройствами, участвующими в обмене по прерываниям, на магистрали ISA показана на рис. 2.8. Процессор общается с контроллером прерываний как по магистрали (чтобы задать ему режимы работы), так и вне магистрали (при обработке запросов на прерывание). Сигналы запросов прерываний IRQ распределяются между всеми устройствами магистрали. На каждую линию IRQ приходится одно устройство. Тип выходного каскада для этих линий — 2С, так как конфликты здесь не предусмотрены. Запросом прерывания является передний, положительный фронт сигнала IRQ. При одновременном поступлении сигналов IRQ от нескольких устройств порядок их обслуживания определяется контроллером прерываний.

Какой тип прерываний лучше — векторный или радиальный?

Векторные прерывания обеспечивают системе большую гибкость, в системе их может быть очень много. Но зато они требуют дополнительных аппаратурных узлов во всех устройствах, запрашивающих прерывания, для обслуживания циклов безадресного чтения.

Радиальных прерываний в системе обычно не очень много (от 1 до 16). При этом типе прерываний, как правило, требуется введение в систему специального контроллера прерываний. Каждое радиальное прерывание требует введения дополнительной линии в шину управления системной магистрали. Но работать с радиальными прерываниями проще, так как все сводится только к выработке единственного сигнала IRQ, и никаких циклов обмена по магистрали не требуется.

2.3.3. Циклы обмена в режиме ПДП

Циклы обмена в режиме прямого доступа к памяти выполняются по тем же правилам, что и циклы программного обмена, и циклы предоставления прерываний.

Прежде чем начать обмен в режиме ПДП, устройство, которому необходим ПДП, должно запросить ПДП и получить его. Процедура запроса и предоставления ПДП очень похожа на процедуру запроса и предоставления прерывания. В обоих случаях устройство, требующее обслуживания, посылает сигнал запроса процессору. Однако в случае ПДП процессор обязательно должен предоставить ПДП запросившему устройству с помощью специальных сигналов, так как на время ПДП процессор отключается от магистрали. А при радиальных прерываниях предоставления прерывания от процессора не требуется.

На магистрали Q-bus запрос и предоставление ПДП организуются подобно запросу и предоставлению прерывания. Упрощенная структура связей устройств, участвующих в ПДП, показана на рис. 2.9. Временная диаграмма запроса/предоставления ПДП очень близка к временной диаграмме запроса/предоставления прерывания (см. рис. 2.7).

Рис. 2.9. Структура связей запроса/предоставления ПДП на магистрали Q-bus.

Сигнал запроса ПДП, называемый -DMR, передается всеми устройствами, нуждающимися в ПДП, по одной линии магистрали. Тип выходного каскада на этой линии — ОК. Процессор, получив сигнал -DMR, выдает сигнал предоставления ПДП DMGO, аналогичный сигналу IAKO. Этот сигнал также проходит через все устройства последовательно, в результате чего ПДП получает только то устройство, которое находится ближе к процессору (географический приоритет). А затем устройство, получившее ПДП, проводит циклы обмена по магистрали, аналогично циклам программного обмена. В циклах ПДП информация читается из памяти и записывается в устройство ввода/вывода, или наоборот — читается из устройства ввода/вывода и передается в память.

На магистрали ISA запрос/предоставление ПДП очень напоминает организацию радиальных прерываний (рис. 2.10). Точно так же в системе существует контроллер ПДП, к которому сходятся сигналы запроса ПДП, называемые DRQ, и от которого расходятся сигналы предоставления ПДП, называемые -DACK. К каждому каналу ПДП (пара сигналов DRQ и -DACK) подключается только одно устройство, запрашивающее ПДП. Тип выходных каскадов для этих сигналов —2С. Устройство, нуждающееся в ПДП, посылает сигнал запроса DRQ и получает в ответ сигнал предоставления -DACK. После этого контроллер ПДП проводит циклы обмена по магистрали между устройством ввода/вывода и памятью.

Упрощенная временная диаграмма циклов ПДП на магистрали ISA показана на рис. 2.11.

На магистрали ISA используются раздельные стробы записи в память (-MEMW) и записи в устройства ввода/вывода (-IOW), а также раздельные стробы чтения из памяти (-MEMR) и чтения из устройств ввода/вывода (-IOR). Это позволяет за один цикл обмена ПДП читать информацию из памяти и записывать ее в устройство ввода/вывода или же читать информацию из устройства ввода/вывода и записывать ее в память. При этом на шине адреса выставляется адрес памяти, а адрес устройства ввода/вывода заменяется одним-единственным сигналом AEN. Естественно, в цикле обмена в режиме ПДП участвует только то устройство ввода/вывода, которое предварительно запросило ПДП и которому ПДП было предоставлено. Поэтому никаких конфликтов между устройствами ввода/вывода из-за такой упрощенной адресации не возникает.

Рис. 2.10.Структура связей запроса/предоставления ПДП на магистрали ISA.

Рис. 2.11. Цикл ПДП на магистрали ISA.

2.4. Прохождение сигналов по магистрали

При организации обмена по магистралям и шинам разработчику необходимо учитывать несколько важных моментов, связанных как с особенностью распространения сигналов по шинам, так и с самой природой шин. В противном случае микропроцессорная система может попросту не работать или работать неустойчиво, хотя вся логика цифровых устройств, входящих в систему, будет спроектирована безошибочно.

В случае, когда системная шина (магистраль) микропроцессорной системы является внешней, а не скрыта внутри микросхемы, необходимо учитывать особенности распространения сигналов по длинным линиям. Хотя в большинстве случаев длина магистрали не слишком велика, не превышает 1—2 десятков сантиметров, это все равно оказывает большое влияние на синхронизацию обмена.

На прохождение сигналов по магистрали влияют следующие факторы:

- конечная величина задержки распространения сигналов по линиям магистрали;

- различие задержек распространения сигналов по разным линиям шины;

- неодновременное выставление сигналов на линии шины;

- искажение фронтов сигналов, проходящих по линиям магистрали;

• отражение сигналов от концов линий связи (рис. 2.12).

Рис. 2.12. Прохождение сигналов по шине.

Для учета всех этих факторов разработчики стандартных магистралей обмена и стандартных протоколов обмена всегда закладывают необходимые задержки между сигналами, участвующими в обмене. Кроме того, задержки между сигналами выбираются таким образом, чтобы устройство, которому адресован тот или иной сигнал, имело достаточно времени для его обработки. Если разрабатывается новая магистраль, все это тоже надо учитывать.

Поэтому пытаться модернизировать какой-то стандартный протокол и ускорять обмен по магистрали путем уменьшения задержек, предусмотренных стандартом, очень опасно. Точно так же опасно, не изменяя протокола обмена, пытаться увеличить длину магистрали, увеличивая тем самым задержки распространения сигналов по линиям и шинам. Особенно чувствительны к такого рода модернизациям синхронные магистрали, в которых не предусмотрено обязательное подтверждение выполнения каждой операции.

Например, длительность фазы адреса в цикле обмена выбирается таким образом. В течение адресной фазы все сигналы всех разрядов кода адреса, пусть даже и сформированные процессором не одновременно, должны дойти до устройства-исполнителя по своим проводам шины. А устройство-исполнитель должно этот код адреса принять и обработать (то есть отличить свой адрес от чужого). Естественно, для гарантии в длительность адресной фазы еще добавляется небольшая дополнительная задержка.

Точно так же длительность фазы данных в цикле чтения должна выбираться такой, чтобы устройство-исполнитель успело получить строб чтения и выдать код читаемых данных на шину данных. Затем этот код должен успеть дойти до процессора и процессор должен успеть его прочитать. После чего процессор снимает сигнал строба чтения, этот задний фронт сигнала доходит с задержкой до устройства-исполнителя, которое также с задержкой снимает свой код данных. Аналогично и в цикле записи.

Для улучшения формы и увеличения мощности сигналов, распространяющихся по магистрали, применяют оконечные согласователи (терминаторы) на концах линий магистрали. Особенно важно их применение в случае, когда допустимая длина магистрали превышает несколько метров. Например, в случае магистрали Q-bus применяются два типа согласователей: 120-омный и 250-омный (рис. 2.13)

Рис. 2.13. Оконечные согласователи на магистрали Q-bus.

Включение согласователей предъявляет дополнительные требования к нагрузочной способности передатчиков, работающих на линии магистрали. В магистрали ISA подобные согласователи не используются, хотя к некоторым линиям присоединены резисторы, соединенные другим своим выводом с шиной питания (прежде всего это линии, тип выходного каскада для которых — ОК).

В любом случае выходные каскады передатчиков, работающих на линии магистрали, должны обеспечивать высокие выходные токи, так как к магистрали может подключаться несколько устройств, каждое из которых потребляет входной ток. Типичные величины требуемых выходных токов магистральных передатчиков находятся в пределах 20—30 мА. В то же время входные токи магистральных приемников должны быть малыми, чтобы не перегружать передатчики. Типичные величины допустимых входных токов магистральных приемников лежат в пределах 0,2—0,8 мА.

2.5. Функции устройств магистрали

Рассмотрим теперь, как взаимодействуют на магистрали основные устройства микропроцессорной системы: процессор, память (оперативная и постоянная), устройства ввода/вывода.

2.5.1. Функции процессора

Процессор (рис. 2.14) обычно представляет собой отдельную микросхему или же часть микросхемы (в случае микроконтроллера). В прежние годы процессор иногда выполнялся на комплектах из нескольких микросхем, но сейчас от такого подхода уже практически отказались. Микросхема процессора обязательно имеет выводы трех шин: шины адреса, шины данных и шины управления. Иногда некоторые сигналы и шины мультиплексируются, чтобы уменьшить количество выводов микросхемы процессора.

Важнейшие характеристики процессора — это количество разрядов его шины данных, количество разрядов его шины адреса и количество управляющих сигналов в шине управления. Разрядность шины данных определяет скорость работы системы. Разрядность шины адреса определяет допустимую сложность системы. Количество линий управления определяет разнообразие режимов обмена и эффективность обмена процессора с другими устройствами системы.

Кроме выводов для сигналов трех основных шин процессор всегда имеет вывод (или два вывода) для подключения внешнего тактового сигнала или кварцевого резонатора (CLK), так как процессор всегда представляет собой тактируемое устройство. Чем больше тактовая частота процессора, тем он быстрее работает, то есть тем быстрее выполняет команды. Впрочем, быстродействие процессора определяется не только тактовой частотой, но и особенностями его структуры. Современные процессоры выполняют большинство команд за один такт и имеют средства для параллельного выполнения нескольких команд. Тактовая частота процессора не связана прямо и жестко со скоростью обмена по магистрали, так как скорость обмена по магистрали ограничена задержками распространения сигналов и искажениями сигналов на магистрали. То есть тактовая частота процессора определяет только его внутреннее быстродействие, а не внешнее. Иногда тактовая частота процессора имеет нижний и верхний пределы. При превышении верхнего предела частоты возможно перегревание процессора, а также сбои, причем, что самое неприятное, возникающие не всегда и нерегулярно. Так что с изменением этой частоты надо быть очень осторожным.

Рис. 2.14. Схема включения процессора.

Еще один важный сигнал, который имеется в каждом процессоре, — это сигнал начального сброса RESET. При включении питания, при аварийной ситуации или зависании процессора подача этого сигнала приводит к инициализации процессора, заставляет его приступить к выполнению программы начального запуска. Аварийная ситуация может быть вызвана помехами по цепям питания и земли, сбоями в работе памяти, внешними ионизирующими излучениями и еще множеством причин. В результате процессор может потерять контроль над выполняемой программой и остановиться в каком-то адресе. Для выхода из этого состояния как раз и используется сигнал начального сброса. Этот же вход начального сброса может использоваться для оповещения процессора о том, что напряжение питания стало ниже установленного предела. В таком случае процессор переходит к выполнению программы сохранения важных данных. По сути, этот вход представляет собой особую разновидность радиального прерывания. Иногда у микросхемы процессора имеется еще один-два входа радиальных прерываний для обработки особых ситуаций (например, для прерывания от внешнего таймера).

Шина питания современного процессора обычно имеет одно напряжение питания (+5В или +3,3В) и общий провод («землю»). Первые процессоры нередко требовали нескольких напряжений питания. В некоторых процессорах предусмотрен режим пониженного энергопотребления. Вообще, современные микросхемы процессоров, особенно с высокими тактовыми частотами, потребляют довольно большую мощность. В результате для поддержания нормальной рабочей температуры корпуса на них нередко приходится устанавливать радиаторы, вентиляторы или даже специальные микрохолодильники.

Для подключения процессора к магистрали используются буферные микросхемы, обеспечивающие, если необходимо, демультиплексирование сигналов и электрическое буферирование сигналов магистрали. Иногда протоколы обмена по системной магистрали и по шинам процессора не совпадают между собой, тогда буферные микросхемы еще и согласуют эти протоколы друг с другом. Иногда в микропроцессорной системе используется несколько магистралей (системных и локальных), тогда для каждой из магистралей применяется свой буферный узел. Такая структура характерна, например, для персональных компьютеров.

После включения питания процессор переходит в первый адрес программы начального пуска и выполняет эту программу. Данная программа предварительно записана в постоянную (энергонезависимую) память. После завершения программы начального пуска процессор начинает выполнять основную программу, находящуюся в постоянной или оперативной памяти, для чего выбирает по очереди все команды. От этой программы процессор могут отвлекать внешние прерывания или запросы на ПДП. Команды из памяти процессор выбирает с помощью циклов чтения по магистрали. При необходимости процессор записывает данные в память или в устройства ввода/вывода с помощью циклов записи или же читает данные из памяти или из устройств ввода/вывода с помощью циклов чтения.

Таким образом, основные функции любого процессора следующие:

- выборка (чтение) выполняемых команд;

- ввод (чтение) данных из памяти или устройства ввода/вывода;

- вывод (запись) данных в память или в устройства ввода/вывода;

- обработка данных (операндов), в том числе арифметические операции над ними;

- адресация памяти, то есть задание адреса памяти, с которым будет производиться обмен;

- обработка прерываний и режима прямого доступа.

Упрощенно структуру микропроцессора можно представить в следующем виде (рис. 2.15).

Рис. 2.15. Внутренняя структура микропроцессора.

Схема управления выборкой команд выполняет чтение команд из памяти и их дешифрацию. В первых микропроцессорах было невозможно одновременное выполнение предыдущей команды и выборка следующей команды, так как процессор не мог совмещать эти операции. Но уже в 16-разрядных процессорах появляется так называемый конвейер (очередь) команд, позволяющий выбирать несколько следующих команд, пока выполняется предыдущая. Два процесса идут параллельно, что ускоряет работу процессора. Конвейер представляет собой небольшую внутреннюю память процессора, в которую при малейшей возможности (при освобождении внешней шины) записывается несколько команд, следующих за исполняемой. Читаются эти команды процессором в том же порядке, что и записываются в конвейер (это память типа FIFO, First In — First Out, первый вошел — первый вышел). Правда, если выполняемая команда предполагает переход не на следующую ячейку памяти, а на удаленную (с меньшим или большим адресом), конвейер не помогает, и его приходится сбрасывать. Но такие команды встречаются в программах сравнительно редко.

Развитием идеи конвейера стало использование внутренней кэш-памяти процессора, которая заполняется командами, пока процессор занят выполнением предыдущих команд. Чем больше объем кэш - памяти, тем меньше вероятность того, что ее содержимое придется сбросить при команде перехода. Понятно, что обрабатывать команды, находящиеся во внутренней памяти, процессор может гораздо быстрее, чем те, которые расположены во внешней памяти. В кэш-памяти могут храниться и данные, которые обрабатываются в данный момент, это также ускоряет работу. Для большего ускорения выборки команд в современных процессорах применяют совмещение выборки и дешифрации, одновременную дешифрацию нескольких команд, несколько параллельных конвейеров команд, предсказание команд переходов и некоторые другие методы.





Дата публикования: 2014-11-04; Прочитано: 1059 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.019 с)...