Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Лекції з дисципліни 2 страница



(8.1)

где Е — модуль Юнга, a G — модуль сдвига.

Экспериментальная кривая растяжения приведена на рис. 8.13. Участок ОА соответствует упругим деформациям, точка Впреде­лу упругости, характеризующему то максимальное напряжение, при котором еще не имеют места деформации, остающиеся в теле после снятия напряжения (остаточные деформации). Горизонталь­ный участок CD кривой растяжения соответствует пределу теку­чести — напряжению, начиная с которого деформация возрастает без увеличения напряжения. И наконец, напряжение, определяе­мое наибольшей нагрузкой, выдерживаемой перед разрушением, является пределом прочности.

Между упругими свойствами кристаллических мономеров и полимерных материалов существует огромная и принципиальная разница, например, в пределах прочности сталь разрывается уже


при растяжении на 0,3%, а мягкие резины можно растягивать до 300%. Это связано с качественно другим механизмом упругос­ти высокомолекулярных соединений.

Как уже говорилось, при деформации кристаллических твер­дых тел, например стали, силы упругости всецело определяются изменением межатомных расстояний. Структура высокомолеку­лярных соединений не регулярна. Они состоят из очень длинных гибких молекул, которые причудливо изогнуты, части молекул находятся в хаотическом тепловом движении так, что их форма и длина все время изменяются. Но в каждый данный момент боль­шинство молекул в недеформированном образце имеет длину, близкую к наиболее вероятной. При приложении нагрузки к мате­риалу (рис. 8.14, а) его молекулы выпрямляются в соответствую­щем направлении и длина образца увеличивается (рис. 8.14, б). После снятия нагрузки вследствие хаотического теплового движе­ния длина каждой молекулы восстанавливается и образец укора­чивается.

Упругость, свойственную полимерам, называют каучукопо-добной эластичностью (высокой эластичностью или высоко-эластичностью).

Приведем данные по механическим свойствам некоторых ма­териалов (табл. 16).

Таблица 16

Материал Модуль Юнга, ГПа Предел прочности, МПа
Сталь Капрон стеклонапол-ненный Органическое стекло 8 3,5 150 50

Различие между деформацией кристаллических мономеров и полимерных материалов проявляется и во временной ее зависи­мости. Дело в том, что практически все материалы обладают пол­зучестью: под действием постоянной нагрузки происходит их де­формация. В полимерах распрямление молекул при нагрузке ма­териала и скольжение макромолекул происходят более длительно, чем, например, ползучесть в металлах. В какой-то мере при ползу­чести процессы, происходящие в полимере, соответствуют тече­нию вязкой жидкости. Сочетание вязкого течения и высокой элас­тичности позволяет называть деформацию, характерную для по­лимеров, вязкоупругой.

Упругие и вязкие свойства тел удобно моделировать. Это дает возможность нагляднее представить механические свойства био­логических объектов (см. § 8.4).

В качестве модели упругого тела (упругой деформации) выбе­рем пружину (рис. 8.15, а), малая деформация которой соответст­вует закону Гука.

Моделью вязкого тела является поршень с отверстиями, дви­жущийся в цилиндре с вязкой жидкостью (рис. 8.15, б).

Силу сопротивления среды в этом случае примем пропорци­ональной скорости перемещения поршня [см. (5.16)]:

(8.2)

Преобразуем уравнение (8.2), осно­вываясь на аналогии. Вместо силы со­противления запишем напряжение (Fconp —> о), т. е. силу, отнесенную к еди­нице площади, коэффициент трения, характеризующий свойство среды ока­зывать сопротивление движущемуся в ней телу, заменим коэффициентом вяз­кости среды —» г|), смещение тела — относительным удлинением —> е). Тог­да вместо (8.2) получим связь между скоростью вязкой деформации и напря­жением:

(8.3)

Из (8.3) видно\ что напряжение зависит не от самой деформации, а от ее скорости (скорости пе-

ремещения поршня).

Вязкоупругие свойства тел моделируются системами, состоя­щими из различных комбинаций двух простых моделей: пружина и поршень. Рассмотрим некоторые из них.

Наиболее простой системой, сочетающей упругие и вязкие свойства, является модель Максвелла, в которой последовательно соединены упругий и вязкий элемент (рис. 8.15, в).

При воздействии постоянной силой пружина упруго мгновенно удлиняется до значения, определяемого законом Гука, а поршень движется с постоянной скоростью до тех пор, пока действует си­ла (напряжение). Так реализуется на модели ползучесть мате­риала.

Если быстро растянуть модель Максвелла и закрепить это со­стояние, то деформация будет сохраняться. Пружина после быст­рого растяжения начнет сокращаться, вытягивая поршень. Со временем будет происходить релаксация, т. е. уменьшение (рас­слабление) напряжения.

Опишем математически эту модель. Из закона Гука (8.1) сле­дует — упругая часть общей деформации в мо­дели Максвелла. Скорость этой деформации равна


Скорость вязкой деформации выразим из (8.3):

(8.5)

Суммируя (8.4) и (8.5), находим скорость общей (суммарной) де­формации модели Максвелла:

(8.6)

Из уравнения (8.6) можно получить временные зависимости как деформации, так и напряжения.

Если (постоянная сила приложена к модели), то из (8.6) следует


Интегрируя последнее выражение от начального момента време­ни и нулевой деформации до текущих значений t и е, получаем

Это соответствует ползучести (рис. 8.16, а).

Если(поддерживается постоянная деформация), то из (8.6) следует

Интегрируя последнее выражение от начального момента времени и начального напряжения о0 до текущих значений t и о, получаем:

(8.8)

Это соответствует релаксации напряжения (рис. 8.16, б).

В рамках модели Максвелла под действием нагрузки происхо­дит, как было показано, быстрое (мгновенное) первоначальное уп­ругое растяжение. В реальных полимерах вязкоупругая деформа­ция обычно происходит сразу же после приложения нагрузки. Поэтому более подходящей может оказаться модель Кельвина — Фойхта, состоящая из параллельно соединенных пружины и по­ршня, нечто вроде амортизатора в автомашине (см. рис. 8.15, г).

Если мгновенно создать в такой системе напряжение

(8.9)

приложив постоянную силу, то деформация системы будет воз­растать. Используя (8.1) и (8.3), преобразуем (8.9):

Проинтегрируем последнее выражение от начального момента времени и ну­левой деформации до текущих значе­ний t и с:

Потенцируя, имеем


Как видно, в рамках модели Кельвина—Фойхта деформация экс­поненциально возрастает со временем. При снятии нагрузки (о = О в момент tj деформация начнет экспоненциально убывать. Оба эти случая показаны на рис. 8.17.

В полимерах реализуются разные виды деформации: упругая обратимая (модель — пружина), вязкоупругая обратимая (модель Кельвина—Фойхта) и необратимая вязкая (модель — поршень). Сочетание этих трех элементов позволяет создавать модели, наи­более полно отражающие механические свойства тел и, в частнос­ти, биологических объектов.

Моделирование механических свойств тел широко используется в реологии. Основная задача реологии — это выяснение зависимости напряжения от относительной деформации: о = /(в); напряжения от времени (релаксация напряжения): о = f(t) при l = const; относи­тельной деформации от времени (ползучесть): е = f(t) при о = const.

§ 8.4. Механические свойства биологических тканей

Под механическими свойствами биологических тканей пони­мают две их разновидности. Одна связана с процессами биологи­ческой подвижности: сокращение мышц животных, рост клеток, движение хромосом в клетках при их делении и др. Эти процессы обусловлены химическими процессами и энергетически обеспечи­ваются АТФ, их природа рассматривается в курсе биохимии. Ус­ловно указанную группу называют активными механическими свойствами биологических систем. Другая разновидность — пас­сивные механические свойства биологических тел. Рассмотрим этот вопрос применительно к биологическим тканям.

Как технический объект биологическая ткань — композици­онный материал, он образован объемным сочетанием химически разнородных компонентов. Механические свойства биологиче­ской ткани отличаются от механических свойств каждого компо­нента, взятого в отдельности. Методы определения механических свойств биологических тканей аналогичны методам определения этих свойств у технических материалов.

Костная ткань. Кость — основной материал опорно-двига­тельного аппарата. В упрощенном виде можно считать, что 2/3 мас­сы компактной костной ткани (0,5 объема) составляет неорганиче­ский материал, минеральное вещество кости — гидроксилапатит ЗСа3(Р04)2 • Са(ОН)2. Это вещество представлено в форме микро­скопических кристалликов. В остальном кость состоит из органи­ческого материала, главным образом коллагена (высокомолеку­лярное соединение, волокнистый белок, обладающий высокоэлас-тичностью). Кристаллики гидроксилапатита расположены между коллагеновыми волокнами (фибриллами).

Плотность костной ткани 2400 кг/м3. Ее механические свойства зависят от многих факторов, в том числе от возраста, индивидуаль­ных условий роста организма и, конечно, от участка организма.

Композиционное строение кости придает ей нужные механиче­ские свойства: твердость, упругость и прочность. Зависимость о = = /(е) для компактной костной ткани имеет характерный вид, по­казанный на рис. 8.18, т. е. подобна аналогичной зависимости для твердого тела (см. рис. 8.13); при небольших деформациях выполняется закон Гука. Модуль Юнга около 10 ГПа, предел про­чности 100 МПа. Полезно эти данные сопоставить с данными для капрона, армированного стеклом (см. табл. 16, заметно хорошее соответствие).

Примерный вид кривых ползучести компактной костной тка­ни приведен на рис. 8.19. Участок ОА соответствует быстрой де-

формации, АВ — ползучести. В момент tv соответствующий точ­ке В, нагрузка была снята. ВС соответствует быстрой деформации сокращения, CD — обратной ползучести. В результате даже за длительный период образец кости не восстанавливает своих прежних размеров, сохраняется некоторая остаточная деформа­ция;:ост.

Этой зависимости приближенно соответствует модель (рис. 8.20, а), сочетающая последовательное соединение пружины с моделью Кельвина—Фойхта. Временная зависимость относитель­ной деформации показана на рис. 8.20, б. При действии постоян­ной нагрузки мгновенно растягивается пружина 1 (участок ОА), затем вытягивается поршень (ползучесть АВ), после прекращения нагрузки происходит быстрое сжатие пружины 1 (ВС), а пружи­на 2 втягивает поршень в прежнее положение (ползучесть CD). В предложенной модели не предусматривается остаточная дефор­мация.

Схематично можно заключить, что минеральное содержимое кости обеспечивает быструю деформацию, а полимерная часть (коллаген) определяет ползучесть.

Если в кости или в ее механической модели быстро создать постоянную деформацию, то скачкообразно возникает и напряже­ние (участок ОА на рис. 8.20, в). На модели это означает растяжение пру­жины 1 и возникновение в ней напря­жения. Затем (участок AS) эта пру­жина будет сокращаться, вытягивая поршень и растягивая пружину 2, на­пряжение в системе будет убывать (релаксация напряжения). Однако да­же спустя значительное время сохра­нится остаточное напряжение оост. Для модели это означает, что не воз­никнет при постоянной деформации такой ситуации, чтобы пружины вер­нулись в недеформированное состоя­ние.

Кожа. Она состоит из волокон кол­лагена, эластина (так же как и колла­ген, волокнистый белок) и основной ткани — матрицы. Коллаген состав­ляет около 75% сухой массы, а эластин — около 4%. Примерные данные по механическим свойствам приведены в табл. 17.

Эластин растягивается очень сильно (до 200—300%), пример­но как резина. Коллаген может растягиваться до 10%, что соот­ветствует капроновому волокну.

Таблица 17

Материал Модуль упругости, МПа Предел прочности, МПа
Коллаген Эластин 10—100 0,1—0,6 100 5

Из сказанного ясно, что кожа является вязкоупругим материа­лом с высокоэластическими свойствами, она хорошо растягивает­ся и удлиняется.

Мышцы. В состав мышц входит соединительная ткань, со­стоящая из волокон коллагена и эластина. Поэтому механические свойства мышц подобны механическим свойствам полимеров.

Релаксация напряжения в гладких мышцах соответствует модели Максвелла (см. рис. 8.15, в; 8.16, б). Поэтому гладкие мышцы могут значительно растягиваться без особого напряжения, что способствует увеличению объема полых органов, например мочевого пузыря.

Механическое поведение скелетной мышцы соответствует мо­дели, представленной на рис. 8.20, а. При быстром растяжении мышц на определенную величину напряжение резко возрастает, а затем уменьшается до оост (см. рис. 8.20, в).

Зависимость о = де) для скелетной мышцы нелинейна (рис. 8.21). Анализ этой кривой показывает, что примерно до е ~ 0,25 в порт­няжной мышце лягушки механизм деформации обусловлен рас­прямлением молекул коллагена (см. § 8.3). При большей деформа­ции происходит увеличение межатомных расстояний в молекулах.

Ткань кровеносных сосудов (сосудистая ткань). Механиче­ские свойства кровеносных сосудов определяются главным образом свойствами коллагена, эластина и гладких мышечных волокон. Со­держание этих составляющих сосудистой ткани изменяется по хо­ду кровеносной системы: отношение эластина к коллагену в общей сонной артерии 2:1, а в бедренной артерии 1: 2. С удалением от сердца увеличивается доля гладких мышечных волокон, в артерио-лах они уже являются основной составляющей сосудистой ткани.

При детальном исследовании механических свойств сосудис­той ткани различают, каким образом вырезан из сосуда образец (вдоль или поперек сосуда). Можно, однако, рассматривать де­формацию сосуда в целом как результат действия давления из­нутри на упругий цилиндр.


Рассмотрим цилиндрическую часть кровеносного сосуда дли­ной I, толщиной h и радиусом внутренней части г. Сечения вдоль и поперек оси цилиндра показаны на рис. 8.22, а, б. Две половины цилиндрического сосуда взаимодействуют между собой по сечени­ям стенок цилиндра (заштрихованные области на рис. 8.22, а). Общая площадь этого «сечения взаимодействия» равна 2hl. Если в сосудистой стенке существует механическое напряжение σ, то си­ла взаимодействия двух половинок сосуда равна

F = σ • 2hl. (8.10)

Эта сила уравновешивается силами давления на цилиндр изнутри (они показаны стрелками на рис. 8.22, б). Силы направлены под разными углами к горизонтальной плоскости (на рисунке). Для того чтобы найти их равнодействующую, следует просуммировать горизонтальные проекции. Однако проще найти равнодействую­щую силу, если умножить давление на проекцию площади полу­цилиндра на вертикальную плоскость ОО'. Эта проекция равна 2rl. Тогда выражение для силы через давление имеет вид

F=p • 2rl. (8.11)

Приравнивая (8.10) и (8.11), получаем σ • 2hl = р • 2rl, откуда

Это уравнение Ламе.

Будем считать, что при растяжении сосуда объем его стенки не изменяется (площадь стенки возрастает, а толщина убывает), т. е. не изменяется площадь сечения стенки сосуда (рис. 8.22, б):


(8.14)

Из (8.14) видно, что в капиллярах (г -» 0) напряжение отсутст­вует (а —> 0).

В заключение отметим разделы и направления медицины, для которых особо важно иметь представление о пассивных механиче­ских свойствах биологических тканей:

в космической медицине, так как человек находится в но­
вых, экстремальных, условиях обитания;

в спортивной медицине результативность достижений и ее
возрастание побуждают спортивных медиков обращать внимание на
физические возможности опорно-двигательного аппарата человека;

механические свойства тканей необходимо учитывать гиги­
енистам при защите человека от действия вибраций;

в протезировании при замене естественных органов и тка­
ней искусственными также важно знать механические свойства и
параметры биологических объектов;

в судебной медицине следует знать устойчивость биологиче­
ских структур по отношению к различным деформациям;

в травматологии и ортопедии вопросы механического воз­
действия на организм являются определяющими.

Этот перечень не исчерпывает значения материала, изложен­ного в настоящей главе, для врачебного образования.

Дополнительный материал

Перечень вопросов

Введение

Механические свойства биологических тканей. Вязкоупругие, упруговязкие и и вязкопластичные системы. Механические свойства мыщц, костей, кровеносных сосудов, легких.

Задачи, объекты и методы биомеханики.

Значение биомеханики для медицины

Биомеханика опорно-двигательной системы человека. Биомеханические аспекты остеогенеза.

Сочленение и рычаги в опорно-двигательном аппарате человека.

Эргометрия. Механические свойства тканей организма.


Тема:

Основы биомеханики

Введение

Механические процессы в живом мире протекают на разных уровнях организации, от целого организма до клетки и субклеточных структур, и относятся к числу важнейших явлений в организме. Биомеханические явления весьма разнохарактерны и включают в себя такие процессы, как функционирование опорно-двигательной системы организма, процессы деформации тканей и клеток, распространение волн упругой деформации, сокращение и расслабление мышц, конвекционное движение биологических жидкостей и легочного газа.

Момент инерции (J) материальной точки равен произведению массы (m) материальной точки на квадрат расстояния (г) этой точки от оси вращения:

J=mr2

Момент инерции твердого тела

,

где интегрирование должно проводиться по всему объему тела

Если для какого-либо тела известен его момент инерции (J0) от­носительно оси, проходящей через центр тяжести, то момент инерции (J) относительно любой оси, параллельной первой, может быть найден по формуле

J = J0 + mа2,

где а — расстояние от центра тяжести тела до оси вращения; m — масса тела.

Момент инерции различных однородных тел массой m относи­тельно оси, проходящей через центр масс: шара радиусом R

J= mR22/5,

цилиндра с внутренним радиусом r и внешним R (ось враще­
ния совпадает с геометрической осью цилиндра)

J= m(r2+R2)/2

В частном случае момент инерции: тонкостенного цилиндра (R ≈ г)

J=mR2

сплошного цилиндра (г=0)

J= mR2/2;

тонкого стержня длиной l (ось вращения проходит перпенди­кулярно стержню через его середину)

J= ml2/12

Момент силы относительно оси вращения равен произведе­нию силы F на плечо l:

,

где l— кратчайшее расстояние от оси вращения до линии дейст­вия силы.

Изменение момента количества движения пропорционально величине приложенного момента силы и времени его действия (основное уравнение динамики вращательного движения):

dL = Mdt,

где dL — изменение момента количества движения.

Момент ко­личества движения L равен произведению момента инерции J на угловую скорость вращения ωо, т. е.

L = Jω0;

М — момент силы, приложенной к телу; dt — промежуток времени, в течение ко­торого на тело действовала сила.

Момент импульса (момент количества движения) материальной точки

Li=miviri

Момент импульса тела

Если момент инерции тела постоянен, то основное уравне­ние динамики вращательного движения можно записать в виде

Jdω0 = Mdt или М =Jε,

где ε — угловое ускорение.

Для изолированного тела, способного изменять момент инер­ции при вращении, закон сохранения момента количества дви­жения можно записать так:

L = const или Jω0 = const.

Кинетическая энергия вращающегося тела

Кинетическая энергия тела, вращающегося с угловой ско­ростью ω вокруг оси, при поступательном движении оси со ско­ростью v

Ek=Jω2/2+mv2/2

Элементарная работа во вращательном движении

dA=Mdφ

где М — момент силы, приложенной к телу. Работа силы при вращательном движении

где углы φ1 и φ2 соответствуют начальному и конечному положе­ниям радиуса-вектора любой точки твердого тела.

Сила, действующая на частицу со стороны окружающей жидко­сти, при центрифугировании

F1 = ρ02r,

где ρ0 — плотность жидкости, V — объем частицы, ω — угловая скорость вращения, r — расстояние частицы от оси вращения.

Сила, действующая на частицу при ее движении по окружности,

F = ρ12r,

где ρ1 — плотность вещества частицы. При F1≠F происходит перемещение частицы в направлении к оси вращения (при F1> >F) или от оси (при F1<.F).

МЕХАНИЧЕСКИЕ СВОЙСТВА БИОЛОГИЧЕСКИХ ТКАНЕЙ.

ВЯЗКОУПРУГИЕ, УПРУГОВЯЗКИЕ И ВЯЗКОПЛАСТИЧНЫЕ

СИСТЕМЫ. МЕХАНИЧЕСКИЕ СВОЙСТВА МЫШЦ, КОСТЕЙ,

КРОВЕНОСНЫХ СОСУДОВ, ЛЁГКИХ

Под влиянием механических воздействий (природных и искусственных) в биологических тканях, органах и системах появляется механическое движение, возникают деформации и напряжения.

Физиологический ответ на эти воздействия зависит от механических свойств биологических тканей и жидкостей. Знания, как меняются под механическим воздействием свойства биологических тканей и жидкостей, важно для понимания физиологии органа, организма и проявления патологического процесса, являются фундаментом профилактики, защиты организм от вредного воздействия и используются для применения искусственных органов и тканей.

Биологические ткани, обладают сложной анизотропной структурой, зависящей от функций, для которых они предназначены. Обычно биологические ткани испытывают большие деформации. Зависимость между силами и удлинениями, соответственно между напряжениями и деформациями, устанавливается экспериментальным образом и имеет нелинейный характер.

Деформацией называют изменение взаимного положения точек тела при котором меняются расстояния между ними в результате внешнего воздействия. Деформации могут быть вызваны внешними воздействиями или изменением температуры.

Деформацию называют упругой, если после прекращения действия силы она исчезает. Неупругие деформации являются пластическими. Мерой деформации служит относительная деформация , где х - первоначальное значение величины, характеризующей деформацию, а - изменение этой величины при деформации.

Напряжением называют внутреннюю силу возникающую в деформированном теле под внешним воздействием, отнесенную к площади поперечного сечения тела перпендикулярной силе:

Упругие деформации подчиняются закону Гука, согласно которому напряжение пропорционально относительной деформации:

где Е - модуль упругости, он равен напряжению, возникшему при относительной деформации, равной единице. При односторонней деформации Е называют также модулем Юнга.

Закон Гука обычно справедлив при малых деформациях. Экспериментальная кривая растяжения приведена на рисунке.

 
 


B

A

 
 


O





Дата публикования: 2014-11-04; Прочитано: 377 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.029 с)...