Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Линейно зависимые и линейно независимые системы векторов



Рассмотрим несколько векторов .

Линейной комбинацией данных векторов называется любой вектор вида , где - некоторые числа. Числа называются коэффициентами линейной комбинации. Говорят также, что в этом случае линейно выражается через данные векторы , т.е. получается из них с помощью линейных действий.

Например, если даны три вектора то в качестве их линейной комбинации можно рассматривать векторы:

Если вектор представлен как линейная комбинация каких-то векторов, то говорят, что он разложен по этим векторам.

Векторы называются линейно зависимыми, если существуют такие числа , не все равные нулю, что . Ясно, что заданные векторы будут линейно зависимыми, если какой-либо из этих векторов линейно выражается через остальные.

В противном случае, т.е. когда соотношение выполняется только при , эти векторы называются линейно независимыми.

Теорема 1. Любые два вектора линейно зависимы тогда и только тогда, когда они коллинеарны.

Доказательство:

1. Действительно, пусть имеем два коллинеарных вектора и . Тогда либо оба они равны нулю, и следовательно, любая их линейная комбинация при любых λ1 и λ2, либо один из них не нуль, тогда другой отличается от него на числовой множитель, например, . Но отсюда , а это и означает линейную зависимость векторов и .

2. Докажем обратное, т.е. если два вектора линейно зависимы, то они коллинеарны. Пусть векторы и линейно зависимы. Тогда найдутся числа λ1 и λ2 такие, что , причём, например, λ2 ≠ 0. Тогда , т.е. векторы коллинеарны.

Таким образом, теорема утверждает, что линейно независимыми на плоскости могут быть только те векторы, которые неколлинеарны.

Аналогично можно доказать следующую теорему.

Теорема 2. Три вектора линейно зависимы тогда и только тогда, когда они компланарны.

Доказательство.

1. Пусть три вектора линейно зависимы, т.е. , где, например, λ3 ≠ 0. Тогда .

Отнесём векторы и к одному началу и проведём через них плоскость. Тогда и будут лежать в той же плоскости, а потому и их сумма, т.е. будет лежать в той же плоскости, т.е. – компланарны.

2. Пусть теперь векторы – компланарны. Тогда они будут лежать в одной плоскости. Отнесём все три вектора к одному началу.

Если векторы и не коллинеарны, то очевидно, вектор можно предствить в виде . Действительно из рисунка видно, что , где и , а значит найдутся числа и такие, что .

Если же вектор коллинеарен вектору , то один из них линейно выражен через другой, т.е. . Что и требовалось доказать.

Таким образом, три некомпланарных вектора всегда линейно независимы. Кроме того, можно показать, что каждые четыре вектора линейно зависимы.

БАЗИС

Базисом называется совокупность отличных от нулей линейно независимых векторов. Элементы базиса будем обозначать .

В предыдущем пункте мы видели, что два неколлинеарных вектора на плоскости линейно независимы. Поэтому согласно теореме 1, из предыдущего пункта, базисом на плоскости являются любые два неколлинеарных вектора на этой плоскости.

Аналогично в пространстве линейно независимы любые три некомпланарных вектора. Следовательно, базисом в пространстве назовём три некомпланарных вектора.

Справедливо следующее утверждение.

Теорема. Пусть в пространстве задан базис . Тогда любой вектор можно представить в виде линейной комбинации , где x, y, z – некоторые числа. Такое разложение единственно.

Доказательство.

I. Докажем сначала существование такого представления.

1. Предположим, что коллинеарен какому-либо из векторов базиса, например, . Тогда по доказанному выше . Следовательно, , где x = l, y = z = 0.

2. Пусть компланарен с какой-либо парой базисных векторов, например, с и . Отложим три вектора от одной точки O. Через точку A проведём прямые, параллельные векторам и . Тогда , причём векторы и коллинеарны соответственно векторам и . Поэтому найдутся числа x и y такие, что , а значит .

3. Пусть некомпланарен ни с одной парой базисных векторов. Отложим от одной точки и проведём через конец вектора прямую, параллельную вектору . Она пересечёт плоскость в точке A1. Очевидно, что . Но вектор компланарен векторам и , следовательно, по доказанному выше, , а вектор коллинеарен , поэтому . Таким образом, .

II. Докажем теперь единственность такого представления.

Допустим, что возможны два представления вектора и . Причём, например, . Тогда должны иметь , т.к. иначе мы имели бы две прямые, проходящие через точку A1 параллельно . Из последнего равенства вытекает, что . Получили противоречие с нашим предположением, что и доказывает теорему.

В качестве частного случая из этой же теоремы можно сформировать следующее утверждение:

Если задан базис на плоскости, то любой вектор, компланарный с векторами можно представить в виде , причём такое разложение единственно.

Таким образом, базис позволяет однозначно сопоставить каждому вектору тройку чисел – коэффициенты разложения этого вектора по векторам базиса: . Верно и обратное, каждой тройке чисел x, y, z при помощи базиса можно сопоставить вектор, если составить линейную комбинацию .

Если базис и , то числа x, y, z называются координатами вектора в данном базисе. Координаты вектора обозначают .





Дата публикования: 2015-11-01; Прочитано: 1273 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...