Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Движение тел с переменной массой. Связь реактивной силы с расходом массы. Уравнение Мещерского



Движение тела с переменной массой является реактивным движением, причем сила тяга создается в результате извержения части массы, принадлежащей телу.

Уравнение движения выводится на примере движения ракеты.

dP=Fdt,

dP=P2-P1,

P2=(M+dM)(V+dV)+vdm, P2=MV,

где M - масса ракеты (в произвольный момент времени), V - скорость ракеты (-"-), v - скорость газов; dM, dV и dm - приращения массы ракеты, скорости ракеты и массы газов за время dt.

Так как масса сохраняется, то dM + dm=0.

(M+dM)(V+dV)+vdm-MV=Fdt,

MV +dMV+MdV+dMdV-vdM-MV=Fdt, так как dt стремится к 0, то пренебрегаем dMdV,

(dMV+MdV)-vdM=Fdt (1)

d(MV)/dt=vdM/dt+F, если ввести Vотн=v-V (скорость газов относительно ракеты), то из (1) получим:

MdV/dt=Vотн*dM/dt+F - уравнение Мещерского.

Член Vотн*dM/dt может быть истолкован как реактивная сила.

Очевидно, что реактивная сила прямо пропорциональна скорости газов и изменению их массы со временем.

Билет 25.

Вопрос 1.

Преобразование ускорения материальной точки при переходе из инерциальных в неинерциальные системы отсчёта.

При рассмотрении неинерциальных систем отсчёта используется следующая терминология. Ускорение а относительно инерциальной системы отсчета называется абсолютным, а ускорение а’ относительно неинерциальной системы - относительным.

Пусть неинерциальная система движется прямолинейно вдоль оси Х инерциальной системы. Ясно, что связь между координатами некоторой точки даётся формулами

Х=Х 0 +x',y=y’; z=z’; t=t’;

Отсюда dx/dt=dx0 /dt+dx’/dt,v=v0 +v’, где v0 -абсолютная- v’- относительная скорости

Переходя к ускорениям: a=dv/dt; a0 =dv0/dt, a’=dv’/dt

Абсолютное, переносное и относительное соответственно. У вращающихся систем дело обстоит сложнее. Отличие обуславливается тем, что переносная скорость различных точек вращающейся системы координат различна. Абсолютная скорость по- прежнему является суммой переносной и относительной скоростей: v=v0 +v’; при перемещении из одной точки системы координат в другую точку изменяется переносная скорость точки. Поэтому, если даже относительная скорость точки при движении не меняется, она должна испытать ускорение, отличное от переносного. Это приводит к тому, что для вращающихся систем координат в выражение для абсолютного ускорения входит ещё одно ускорение ак,называемое кориолисовым. Для выяснения физической сущности кориолисово ускорениярассмотрим движение в плоскости вращения. Прежде всего нас интересует движение точки с постоянной относительной скоростью вдоль радиуса.Возьмём два момента времени разделённые промежутком dt, в течение которого радиус повернётся на угол da=wdt. Скорость

vr вдоль радиуса изменяется за это время по направлению, а скорость v n, перпендикулярная радиусу изменяется как по направлению так и по модулю. Модуль полного изменения скорости равен dvn=v n2-vn1 cosa+ vr da = wr2 –wr1cosa+ vrda @wdr+wdtvr,где косинус порядка 1; следовательно в пределе dt к 0 имеем ак=2WV’, анализируя направление величин понимаем что ак=2WxV’;где v’ относительная скорость направленная перпендикулярно радиусу. В случае движения точки перпендикулярно радиусу, т.е. по окружности, относительная скорость v’=wr в неподвижной системе координат равна w+w’, где w угловая скорость вращающейся системе координатю Для абсолютного ускорения получаем следующее выражение а=(w+w’)2 r=w2r +w’2 +2ww’r; Первый член представляет собой переносное ускорение, второй относительное ускорение, третий очевидно является кориолисовым. Произвольная скорость может быть представленна в виде суммы двух компонент, направленных по радиусу и перпендикулярно ему. А=а0+а’ +ak

Вопрос 2.

Изменение частоты звука при движении источника и приёмника. Эффект Доплера.

Эффект Доплера. Движение источника звука, сопровождающееся изменением расстояния от источника до приёмника,приводит к изменению частоты принимаемого звука. Это связано с тем, что скорость распространения звуковой волны в среде не зависит от скорости движения источника. Поэтому, если источник звука движется от приёмника со скоростью v см/сек, то за единицу времени мимо приёмника пройдут не все максимумы, а только часть их: приёмник отметит меньшее число колебаний, чем создаёт источник. Убедиться в этом можно при помощи элементарного расчёта. Пусть источник в начале секунды находился на расстоянии с см от приёмника, с см/сек –скорость звука в среде, тогда через секунду он будет находится на расстоянии с+v см на этом расстоянии уложатся все f максимумов которые за 1 сек созданы излучателем (f-частота), но за 1 секунду до приёмника дойдут не все максимумы, а часть на расстоянии с см f’=f/(1+v/c) –частота полученная приёмником,если приёмник приближается то f’=f/(1-v/c); если же вдижется приёмник, а не источник,то если приёмник движется к источнику со скоростью v то за 1 сек он пройдёт не f, а f ‘’ максимумов, где f’’=f(1+v/c) если удаляется то f‘’=f(1-v/c);


Билет 26.

Вопрос 1.

Энергия запасённая в колебательной системе. Взаимопревращение потенциальной и кинетической энергии. Потери энергии в системе с затуханием. Добротность.

Запас начальной кинетической и потенциальной энергий определяется из начального смещения и начальной скорости. Если бы потери энергии в системе отсутствовали, то этот начальный запас энергии оставался бы неизменным при колебаниях. Процесс колебаний сопровождался бы только переходом энергии из потенциальной в кинетическую и обратно, которые будут происходить в двое большей частотой, чем сами колебания.

U=kx2 /2=kx2cos2(wt+p)/2=kX2(1+cos2(wt+p))/4;

Tk=mV2/4(1- cos2(wt+p))/4; формулы содержат двойную частоту, но изменения потенциальной и кинетической энергий происходят по гармоническому закону. Так как амплитуды смещения и скорости связаны соотношеннием V=wX; то полная энергия равна W=Tk+U=kX2/2=mV2/2;

При наличии трения, являющегося внешней силой, энергия колебаний уменьшается.

Добротноть. Для характеристики осциллирующей системы часто принимается величина Q называемая добротностью. Эта величина представляет собой умноженное на 2p отношение запасённой энергии к среднему значению энергии, теряемому за один период. Большим значениям Q соответствует слабое затухание осциллятора.Q=p/Q, где Q логарифмический декримент затухания.

Вопрос 2.

Динамика твёрдого тела. Уравнение моментом относительно неподвижной точки, неподвижной оси и движущейся оси, проходящей через центр масс при плоском движении.

Твердое тело может рассматриваться как система материальных точек, расстояние между которыми постоянно.Поэтому все уравнения справедливые для системы материальных точек справедливы и для твердого тела: dp/dt=F; dL/dt=M; Для твёрдого тела эти уравнения являются замкнутой системой с их помощью без каких либо дополнительных условий можно полностью определить движение твёрдого тела в заданых внешних силовых полях. Необходимо лишь знать начальные условия. Из кинематики плоского движения известно, что в этом случае все точки движутся в пврвллельных плоскостях. Поэтому достаточно рассмотретьь движение какого-либо сечения тела в одной плоскости. Вектор угловой скорости всегда перпендикулярен плоскоски и следовательно имеет постоянное направление. Поэтому если ось Z связанной с телом системы провести перпендикулярно плоскости движения, то угловая скороть вращения всегда будет направленна по этой оси. Для того чтобы избежать учёта центробежных моментов тензора инерции целесообразно ось вращения провести через центр масс. Таким образом уравнения для плоского движения примут вид: mdv/dt=F; Jdw/dt=M;





Дата публикования: 2015-11-01; Прочитано: 261 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...