Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Гетероцепные полимеры



У гетероцепных полимеров вращение возможно вокруг связей С–О, С–N, Si–O, C–C. Значения U0 для этих связей невелики и цепи обладают достаточной кинетической гибкостью. Примеры: полиэфиры, полиамиды, полиуретаны, силоксановые каучуки.

Однако гибкость гетероцепных полимеров может ограничиваться межмолекулярными взаимодействиями за счёт образования Н-связей (например, у целлюлозы, полиамидов). Целлюлоза является одним из жесткоцепных полимеров. У неё содержится большое количество полярных групп (–OH) и поэтому для целлюлозы характерны внутри- и межмолекулярные взаимодействия и высокие значения U0 и малая гибкость.

Молекулярная масса полимера. Увеличение ММ полимера повышает свернутость цепи и поэтому длинные макромолекулы обладают большей кинетической гибкостью по сравнению с короткими макромолекулами. По мере увеличения ММ возрастает число конформаций, которое может принимать макромолекула и гибкость цепей увеличивается.

Густота пространственной сетки. Чем больше химических связей между макромолекулами, тем меньше гибкость цепей, т.е. с увеличением густоты пространственной сетки гибкость уменьшается. Примером является снижение гибкости цепей с увеличением числа сшивок в ряду резол<резитол<резит.

Влияние размера и количества заместителей. Увеличение числа полярных и больших по размеру заместителей снижает подвижность звеньев макромолекулы и уменьшает кинетическую гибкость. Примером является снижение гибкости макромолекул сополимера бутадиена и стирола при увеличении содержания громоздких фенильных заместителей в цепи. Если при одном атоме углерода в основной цепи полимера имеются два заместителя (например, ОСН3 и СН3 в звеньях ПММА), то макромолекула становится кинетически жесткой.

Температура. С повышением температуры возрастает кинетическая энергия макромолекулы. До тех пор, пока величина кинетической энергии меньше U0, цепи совершают крутильные колебания. Когда кинетическая энергия макромолекулы становится равной или превышает величину U0 звенья начинают вращаться. С повышением температуры величина U0 мало изменяется, а скорость поворота звеньев увеличивается и кинетическая гибкость возрастает.

Химические превращения макромолекул используются для получения новых полимеров и модификации свойств готовых полимеров. Такие превращения могут осуществляться как направленно, так и самопроизвольно в процессе синтеза, переработки и эксплуатации полимеров под действием света, кислорода воздуха, тепла и механических воздействий. Основными разновидностями химических превращений полимеров являются:

1) Реакции, протекающие без изменения степени полимеризации (внутримолекулярные и полимераналогичные превращения),

2) Реакции, приводящие к увеличению степени полимеризации (сшивание и отверждение полимеров, получение блок- и привитых сополимеров),

3) Реакции, приводящие у уменьшению степени полимеризации (деструкция полимеров).

Особенности химических реакций полимеров

Химические реакции полимеров не отличаются от классических органических реакций, однако вследствие больших размеров макромолекул и сложности их строения реакции полимеров имеют специфические особенности.

Основными отличиями реакций полимеров от реакций низкомолекулярных соединений являются:

• Для полимеров возможны реакции, не присущие низкомолекулярным соединениям, например, деполимеризация. Деполимеризация – это последовательное отщепление от цепи звеньев мономера.

• В отличие от реакций низкомолекулярных соединений, когда конечные и промежуточные продукты реакций можно от делить от исходных соединений, в случае реакций полимеров конечные и промежуточные продукты входят в состав одной и той же макромолекулы и их невозможно разделить. Например, при этерификации низкомолекулярного спирта на каждой стадии реакции в системе находятся спирт, кислота, сложный эфир и вода, которые могут быть разделены. При этерификации поливинилового спирта промежуточными продуктами реакции являются сополимеры, содержащие гидроксильные и сложноэфирные группы, которые невозможно разделить:

Реакционная способность функциональных групп макромолекул отличается от реакционной способности низкомолекулярных соединений. Причиной является цепная природа полимера, когда “принцип равной реакционной способности” Флори не соблюдается. Устарело представление, что реакционная способность функциональных групп не должна зависить от длины полимерной цепи.

Основными особенностями в химическом поведении полимеров по сравнению с низкомолекулярными аналогами являются конфигурационный, конформационный, концентрационный.

Надмолекулярный, электростатический эффекты и “эффект соседа”.

Конфигурационный эффект - это различие в окружении функциональных групп полимера в начале и в конце реакции, которое отражается на направлении и завершенности реакции, на кинетике и механизме реакции.

На реакционную способность полимеров при химических превращениях существенное влияние оказывает стереоизомерия цепи. Например, цис -изомер – натуральный каучук отличается при химических превращениях от транс -изомера – гуттаперчи. Расположение функциональных групп по длине цепи также влияет на их химические свойства. Например, макромолекулы ПВС “нормального” строения (соединение звеньев по типу “голова к хвосту”) не подвергаются деструкции под действием кислорода и иодной кислоты (HIO4), а макромолекулы ПВС аномального строения (соединение звеньев по типу “голова к голове”) легко деструктируются.

Другой пример, при расположении звеньев в цепи ПВХ по типу “голова к хвосту” дегидрохлорирование и термический распад макромолекул протекает медленно, а при расположении звеньев в цепи по типу “голова к голове” реакция протекает быстро.

ПВХ Полихлоропрен

“Эффект соседа”. В полимерах изменение реакционной способности функциональных групп или звеньев под влиянием уже прореагировавшей группы, расположенной по соседству в данной называется “эффектом соседа”. Влияние “соседей” вызывает изменение скорости и механизма реакций в полимерах. При этом скорость реакции может повышаться в 103–104 раз. Наряду с ускоряющим действием “соседи” могут оказывать и ингибирующее влияние на скорость реакции.

Молекулярная масса полимеров и молекулярно-массовое распределение (ММР). Полидисперсность полимеров. Среднечисловая, средневязкостная и среднемассовая молекулярная масса полимеров. Способы определения молекулярных масс полимеров.

Большинство синтетических полимеров состоит из макромолекул различной длины, т.е. являются полидисперсными вследствие статистического (случайного) характера элементарных реакций синтеза и возможности деструкции макромолекул. Биополимеры обычно однородны по молекулярной массе (ММ), однако при выделении полимеров некоторые связи разрушаются и биополимеры становятся полидисперсными.

Вследствие полидисперсности полимеры характеризуют средними ММ и в зависимости от типа усреднения различают среднечисловую и среднемассовую ММ. Существуют и другие типы усреднения, так при исследовании гидродинамических свойств полимеров определяют среднегидродинамические ММ. Такие ММ определяют при измерении вязкости (средневязкост ная – M η), константы седиментации (среднеседиментационна я – M S) или коэффициента диффузии (среднедиффузионнаяM D).

Среднечисловая молекулярная масса определяется соотношением:

Здесь N – число макромолекул, xi – числовая доля макромолекул с молекулярной массой Mi. xi= Ni / Σ N i.

Экспериментально n M измеряют методами, в основе которых лежат коллигативные свойства растворов (зависящие от числа частиц). К таким методам относят осмометрию, криоскопию, эбулиоскопию и анализ концевых групп.

Среднемассовая молекулярная масса определяется соотношением:

Здесь N – число макромолекул, ωi – массовая доля макромолекул с молекулярной массой Mi. ωi = Ni Mi / Σ N i Mi. Экспериментально M ω определяют методом светорассеяния. Величина M ω > n M для полидисперсного образца и M ω= Mn для монодисперсного образца. Значения M ω более чувствительны к наличию в образце высокомолекулярных фракций, а n M – к наличию низкомолекулярных фракций.

Отношение M ω/ n M = К D называется показателем полидисперсности. Если образец монодисперсен, то К D=1 (редкий случай). Для большинства синтетических и природных полимеров К D>1, т.е. полимеры полидисперсны, причём К D может изменяться в широких пределах (от 2 до 20). Значения показателя полидисперсности К D связаны с механизмом образования полимера. Так, К D=1,5 для продукта радикальной полимеризации при обрыве цепи рекомбинацией и К D=2 – при обрыве цепи диспропорционированием. Для полимеров, полученных поликонденсацией, К D=1 + Х, где Х – конверсия. При Х→1 (100%) К D=2.

Для характеристики полидисперсности полимеров, кроме показателя полидисперсности, используются кривые молекулярно-массового распределения (ММР). Различают интегральные и дифференциальные функции ММР (рис. 1), которые могут быть числовыми и массовыми. Интегральная кривая ММР – это зависимость между ММ и интегральной массовой (или числовой) долей фракций полимера.

Дифференциальная кривая ММР представляет собой зависимость ММ от массовой [молекулярно-массовое распределение (ММР) (рис.2, кривая 2)] или числовой доли фракции [молекулярно-числовое распределение (МЧР) (рис. 2, кривая 1)]. КривыеМЧР и ММР не совпадают, т.к на числовое распределение большое влияние оказывают низкомолекулярные фракции, а на массовое распределение влияют высокомолекулярные фракции.

Абсцисса центра тяжести площади, ограниченной кривой ММР, равна M ω, а абсцисса центра тяжести площади, ограниченной кривой МЧР, равна n M (см. рис.2). Кривые распределения могут иметь один (унимодальные), два (бимодальные) или несколько максимумов (полимодальные).

При одинаковой средней ММ полимеры могут иметь различное ММР – узкое (на рис. 3, кривая 2) и широкое (рис. 3, кривая 1).

Рис. 1. Кривые интегрального (2) и дифференциального (1) массового ММР полимера.

Здесь Δ m / m0 – относительная интегральная доля фракций, а (1/ m0)(d m/d M) – массовая доля фракций.

Рис. 2. Дифференциальные кривые МЧР (1) и ММР(2).

Рис. 3. Кривые ММР с различной полидисперсностью и одинаковым значением средней ММ.

Фракционирование полимеров

Фракционирование позволяет разделять образцы полимеров на фракции с различными ММ и используется для построения кривых ММР. Различают два типа фракционирования: препаративное и аналитическое. При препаративном фракционировании выделяют отдельные фракции и изучают их свойства. При аналитическом фракционировании кривую распределения получают без выделения отдельных фракций. К аналитическим методам фракционирования относят ультрацентрифугирование, турбодиметрическое титрование, гель-проникающую хроматографию.

К препаративным методам фракционирования относятся фракционное растворение и фракционное осаждение. Эти методы основаны на зависимости растворимости полимера от ММ – с увеличением ММ растворимость полимера уменьшается. Метод фракционного осаждения заключается в последовательном осаждении из раствора полимера фракций, ММ которых убывает. Осаждение фракций вызывают различными способами:

• добавлением осадителя к раствору полимера,

• испарением растворителя из раствора полимера,

• изменением температуры раствора, которое ухудшает качество растворителя.

Метод фракционного растворения заключается в последовательном экстрагировании полимера рядом жидкостей с возрастающей растворяющей способностью. При этом выделяемые фракции имеют последовательно возрастающую ММ.

Построение кривых распределения по ММ

В результате фракционирования выделяют ряд фракций. Для каждой фракции определяют массу и находят ММ. Экспериментальные данные вносят в таблицу.

Затем определяют массовую долю каждой фракции ωi и далее определяют интегральную массовую долю фракций суммированием всех долей фракций, начиная с наименьшей по ММ фракции. Расчётные данные вносят в таблицу.

По данным таблицы строят интегральную кривую ММР в координатах Wi=f (ММ) и дифференциальную кривую ММР в координатах dWi / dMi=f (ММ).

Изомерия высокомолекулярных соединений. Особенности изомерии полимерных материалов, понятие ближнего и дальнего порядка. Конформационная и конфигурационная изомерия элементарного звена.





Дата публикования: 2015-10-09; Прочитано: 1270 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...