Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Энергия в химической технологии



2.2.1. Человеческое общество и проблема энергии. Энергово­ору­женность общества является условием прогресса человечества, и уровень его материального благосостояния определяется количеством энергии, выраба­ты­ваемой на душу населения. Потребление энергии на Земле непрерывно возрастает. В 1975 оно составило 0,25Q, в 2000 г. – 0,8Q, а прогноз на 2100 г. составляет колоссальную цифру – 7,3Q, где Q = 2,3 · 1014 кВт · ч.

Выявлена определенная зависимость между потреблением обществом энергии на душу населения и средней продолжительностью жизни. Для до­сти­жения устойчивой средней продолжительности жизни, равной 80 лет, по­требление энергии на душу населения составляет 7 · 103 кВт · ч. Этот порог достигли или близки к нему такие страны, как Швеция, Япония, Израиль, ФРГ, США. В России же потребление энергии составляет 4 · 103 кВт . ч, что соответствует продолжительности жизни менее 70 лет.

2.2.2. Использование энергии в химической технологии. Химичесое производство – одно из самых энергоемких. Доля энергетических затрат в ней составляет 9 %, в то время как в среднем по промышленности она равна 2,5 %. При доле химической отрасли 6 % во всей промышленности она потребляет до 12 % всей вырабатываемой энергии.

В химической технологии энергия служит для проведения следующих операций:

- химических реакций;

- компрессии газов и жидкостей;

- нагрева материалов;

- проведения тепловых процессов, не связанных с химическими реак­циями, (ректификация, испарение и др.);

- проведения механических и гидродинамических процессов (фильтро­вание, измельчение, сушка и т. д).

В химическом производстве используют электрическую, тепловую, топ­­­лив­ную, световую, ядерную и химическую виды энергии.

Электроэнергия необходима для электрохимических, электротерми­чес­ких, электромагнитных и электростатических процессов, а также для перено­са различных материалов и приведение в действие машин и механизмов.

Тепловая энергия применяется для высокотемпературной переработки сырья (обжиг, нагрев аппаратуры, реагентов и т. д.). Передачу тепла ведут за счет контакта нагреваемой системы с теплоносителем, в качестве которого наиболее распространены горячий воздух, топочные газы, горячую воду и во­дяной пар. Тепловая энергия, используемая в химической промышлен­ности, делится на высокопотенциальную (более 350 оС), среднепотен­циаль­ную (100–350 оС) и низкопотенциальную (50–100 оС).

Топливная энергия (энергия, полученная при сжигании топлива непо-средственно на технологических установках), применяется для производства тепла и электроэнергии в печах специального назначения.

Световую энергию применяют для проведения процессов фотосинтеза, например, при производстве хлороводорода и галогенопроизводных.

Химическая энергия находит применение в работе химических источ­ни­ков тока.

Ядерная энергия применяется для проведения радиационно-химичес-ких процессов (например, некоторых полимеризационных процессах, а также для анализа, контроля и регулирования технологических процессов.

В химической промышленности на долю электрической энергии при­ходится примерно 40 %, тепловой – 50 %, топливной – 10 %. Доля осталь­ных видов энергии составляет менее 1 %.

2.2.3. Источники энергии. Классификация источников энергии. Основными источниками энергии для промышленности служат горючие ископаемые и продукты их переработки, энергия воды, пара, биомасса и ядерное топливо. Незначительная доля приходится на энергию ветра, солнца, приливов и геотермальную энергию.

Объем энергии, вырабатываемой в настоящее время на планете составляет примерно 3 · 1014 кВт · ч в год.

Все энергетические ресурсы делятся на первичные и вторичные, во­зобновляемые и невозбновляемые, топливные и нетопливные. Невозоб­но­вляемые энергетические ресурсы связаны с горючими ископаемыми. Среди них каменный уголь, нефть, природный газ, торф, горючие сланцы, битуми­нозные пески. Остальные виды энергии – это возобновляемые. К ним отно­сятся энергия солнца, ветра, приливов, био- и геотермальная энергии. Все вышеперечисленные виды энергетических ресурсов являются первичными.

Вторичными энергоресурсами называют энергетический потенциал ко­нечных, побочных и промежуточных продуктов и отходов химического про­изводства, используемые для энергоснабжения установок, машин и меха­низмов. К ним относят теплоту экзотермических реакций, энтальпию отхо­дящих продуктов процесса, а также потенциальную энергию сжатых газов и жидкостей. Предприятия нефтеперерабатывающей, нефтехимичес­кой, газо­вой и хи­мической промышленности, а также металлургии распо­ла­гают наи­большими ресурсами вторичной энергии, главным образом, в виде тепловой. Схематично классификация источников энергии приведена на рис. 2.1.


Рис. 2.1. Классификация энергетических ресурсов

2.2.4. Рациональное использование энергии в химической промы-шленности. Большая доля энергии в себестоимости в химическом производ­стве требует рационального и экономичного подхода к ее использованию. Критерием экономичности при этом является коэффициент использования энергии, равный отношению количества энергии, теоретически необходимой для производства единицы продукции к фактически затраченной энергии:

= WТ/WП (2.1)

В случае высокотемпературных эндотермических процессов этот коэф-фициент не превышает 0,7, т.е. свыше 30 % энергии теряется с продуктами реакции или путем теплопередачи через стенку в окружающую среду.

Существует ряд методов снижения тепловых потерь, которые сводятся к двум типам: разработка энергосберегающих технологий и экономичное ис­пользование энергии при существующей технологии.

К первому типу относятся следующие мероприятия:

- разработка новых энергоэкономных технологий;

- замена применяемых методов разделения на менее энергоемкие, на­пример, ректификацию на экстракцию и т.д.;

- создание комбинированных энерготехнологических схем, объединя-ющих технологические операции, протекающие с поглощением и выделе­нием энергии.

Ко второму типу энергосберегающих мероприятий относятся:

- уменьшение тепловых потерь за счет эффективной теплоизоляции и уменьшения излучающей поверхности аппаратуры;

- снижение потерь на электросопротивление в электрохимических про­цессах.

2.2.5. Новые виды энергии в химической технологии. В последние десятилетия в химическую технологию все более интенсивно внедряются новые виды энергии, полученные с применением плазмохимических про­цес­сов, ультразвука, фото- и радиационного воздействия, низковольт­ного электрического разряда, лазерного излучения. Эти экстремальные воздействия способствуют активации молекул реакционной системы, возни­кновению в ней возбужденных частиц и инициированию химического, в т. ч. с высокой селективностью, процесса. Эта область составляет новый раздел химии – химию высоких энергий (ХВЭ), изучающую состав, свойства и химические превращения в системах, содержащих возбужденные частицы.

Среди этих процессов наиболее перспективными и универсальными являются плазмохимические процессы. Они отличаются протеканием хими­чес­ких процессов в плазменном состоянии.

Различают низкотемпературную (103–104 К) и высокотемпературную (106–108 К) плазму. В химической технологии применяют низкотемператур­ную плазму. Исследования по применению плазмы в химической промы-шлен­ности проводились более чем в 70 технологических процессах, некото­рые из которых внедрены в производство, в т. ч.:

- синтез тугоплавких соединений, таких как карбиды урана и тантала, нитриды титана, алюминия, вольфрама;

- восстановление металлов из оксидов и солей (железо, алюминий, воль­фрам, никель, тантал);

- окисление различных веществ (азот, хлороводород, оксид углерода, метан);

- пиролиз углеводородного сырья;

- одностадийный синтез из элементов (аммиака, цианистого водорода, гидразина, фторуглеводородов);

- синтез соединений, образующихся только в условиях плазмы, напри­мер, озона, дифторида криптона, оксида серы (II), оксида кремния (II).

В промышленных масштабах плазмохимические процессы применяют для производства ацетилена и водорода из природного газа, ацетилена, эти­ле­на и водорода из нефтепродуктов, диоксида титана и т.д.

Плазмохимические процессы отличаются очень малым временем контакта 10–2–10–5 с. При этом под временем контакта понимают истинное время реакции, рассчитываемое по формуле:

с, (2.2)

где V – реакционный объем, м 3

Wo – объем исходной смеси сырья, подаваемый в реактор в единицу времени, м3.

Небольшое время контакта определяет незначительные размеры реак­то­ра. Плазмохимические процессы легко управляемы, оптимизируются и мо­делируются и затраты энергии на них не выше, чем в традиционных про­цессах.

Особое место в ряду перспективных источников энергии занимает водород. Его применение как источника энергии имеет ряд преимуществ:

- широкое распространение в земной коре (горючие ископаемые) и виде практически неисчерпаемых водных ресурсов;

- высокое энергосодержание (в 3,5 раза выше, чем энергосодержание нефти);

- экологическая чистота продуктов сгорания (вода).

В России наиболее экономичный источник водорода – природный газ, из которого водород получают путем парокислородной или паровоздушной конверсии, базирующейся на следующих химических реакциях:

СН4 + Н2О СО + 3Н2 – 206 кДж/моль (2.3)

СН4 + 0,5О2 СО + 2Н2 + 35 кДж/моль (2.4)





Дата публикования: 2015-10-09; Прочитано: 4028 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...