Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Конспект лекций по курсу 6 страница



Таким образом, понятие экологического фактора – одно из наиболее общих и чрезвычайно широких понятий экологии. В соответствии с этим задача классификации экологических факторов оказалась весьма сложной, так что общепринятого варианта до сих пор нет. В то же время достигнуто согласие относительно целесообразности использования при классификации экологических факторов определенных признаков.

Традиционно выделяли три группы экологических факторов:

1) абиотические (неорганические условия – химические и физические, такие, как состав воздуха, воды, грунта, температура, свет, влажность, радиация, давление и т.п.);

2) биотические (формы взаимодействия между организмами);

3) антропогенные (формы деятельности человека).

Сегодня различают десять групп экологических факторов (общее количество – около шестидесяти), объединенных в специальную классификацию:

· по времени – факторы времени (эволюционные, исторические, действующие), периодичности (периодические и непериодические), первичные и вторичные;

· по происхождению (космические, абиотические, биотические, природные, техногенные, антропогенные);

· по среде возникновения (атмосферные, водные, геоморфологические, экосистемные);

· по характеру (информационные, физические, химические, энергетические, биогенные, комплексные, климатические);

· по объекту влияния (индивидуальные, групповые, видовые, социальные);

· по степени влияния (летальные, экстремальные, ограничивающие, возмущающие, мутагенные, тератогенные);

· по условиям действия (зависимые или независимые от плотности);

· по спектру влияния (выборочного или общего действия).

Прежде всего, экологические факторы делятся на внешние (экзогенные или энтопические) и внутренние (эндогенные) по отношению к данной экосистеме.

К внешним относятся факторы, действия которых в той или иной степени определяют изменения, происходящие в экосистеме, но сами они практически не испытывают ее обратного воздействия. Таковы солнечная радиация, интенсивность атмосферных осадков, атмосферное давление, скорость ветра, скорость течения и т.д.

В отличие от них внутренние факторы соотносятся со свойствами самой экосистемы (или отдельных ее компонентов) и в действительности образуют ее состав. Таковы численности и биомассы популяций, запасы различных веществ, характеристики приземного слоя воздуха, водной или почвенной массы и т.д.

Второй распространенный классификационный принцип – это деление факторов на биотические и абиотические. К первым относятся разнообразные переменные, характеризующие свойства живого вещества, а ко вторым - неживых компонентов экосистемы и ее внешней среды. Деление факторов на эндогенные - экзогенные и на биотические - абиотические не совпадают. В частности, существуют как экзогенные биотические факторы, например интенсивность заноса извне семян некоторого вида в экосистему, так и эндогенные абиотические факторы, такие, как концентрация О2 или СО2 в приземном слое воздуха или воде.

Широкое использование в экологической литературе находит классификация факторов по общему характеру их происхождения или объекту воздействия. Например, среди экзогенных различают метеорологические (климатические), геологические, гидрологические, миграционные (биогеографические), антропогенные факторы, а среди эндогенных – микрометеорологические (биоклиматические), почвенные (эдафические), водные и биотические.

Важным классификационным показателем служит характер динамики экологических факторов, в особенности наличие или отсутствие ее периодичности (суточной, лунной, сезонной, многолетней). Связано это с тем, что приспособительные реакции организмов к тем или иным факторам среды определяются степенью постоянства воздействия этих факторов, то есть их периодичностью.

Биологом А.С. Мончадским (1958) выделялись первичные периодические факторы, вторичные периодические факторы и непериодические факторы.

К первичным периодическим факторам относятся в основном явления, связанные с вращением Земли: смена времен года, суточная смена освещенности, приливные явления и т.п. Эти факторы, которым свойственна правильная периодичность, действовали еще до появления жизни на Земле, и возникающие живые организмы должны были сразу адаптироваться к ним.

Вторичные периодические факторы - следствие первичных периодических: например, влажность, температура, осадки, динамика растительной пищи, содержание растворенных газов в воде и т.п.

К непериодическим относятся факторы, не имеющие правильной периодичности, цикличности. Таковы почвенно-грунтовые факторы, разного рода стихийные явления. Антропогенные воздействия на окружающую среду часто относятся к непериодическим факторам, которые могут проявляться внезапно и нерегулярно. Поскольку динамика естественных периодических факторов - одна из движущих сил естественного отбора и эволюции, живые организмы, как правило, не успевают выработать приспособительных реакций, например, к резкому изменению содержания тех или иных примесей в окружающей среде.

Особая роль среди экологических факторов принадлежит суммативным (аддитивным) факторам, характеризующим численности, биомассы или плотности популяций организмов, а также запасы или концентрации различных форм вещества и энергии, временные изменения которых подчиняются законам сохранения. Подобные факторы называются ресурсами. Например, говорят о ресурсах тепла, влаги, органической и минеральной пище и т.д. В отличие от них такие факторы, как интенсивность и спектральный состав радиации, уровень шума, окислительно-восстановительный потенциал, скорость ветра или течения, размер и форма пищи и т.д., которые сильно влияют на организмы, не относятся к категории ресурсов, т.к. к ним не применимы законы сохранения.

Число всевозможных экологических факторов представляется потенциально неограниченным. Однако по степени воздействия на организмы они далеко не равносильны, вследствие чего в экосистемах разного типа некоторые факторы выделяются как наиболее существенные, или императивные. В наземных экосистемах из числа экзогенных факторов к ним, как правило, относятся интенсивность солнечной радиации, температура и влажность воздуха, интенсивность атмосферных осадков, скорость ветра, скорость заноса спор, семян и других зародышей или притока взрослых особей из других экосистем, а также всевозможные формы антропогенного воздействия. Эндогенными императивными факторами в наземных экосистемах являются следующие:

1) микрометеорологические - освещенность, температура и влажность приземного слоя воздуха, содержание в нем СО2 и О2;

2) почвенные - температура, влажность, аэрация почвы, физико-механические свойства, химический состав, содержание гумуса, доступность элементов минерального питания, окислительно-восстановительный потенциал;

3) биотические - плотность популяций разных видов, их возрастной и половой состав, морфологические, физиологические и поведенческие характеристики.

3.1.2. Пространство экологических факторов и функция отклика организмов на совокупность экологических факторов

Интенсивность воздействия каждого экологического фактора может быть численно охарактеризована, то есть описана математической переменной, принимающей значение на некоторой шкале.

Экологические факторы могут быть упорядочены по силе их относительно воздействия на организм, популяцию, экосистему, то есть ранжированы. Если значение первого по силе воздействия фактора измеряется переменной х 1, второго - переменной х 2, …, n -го - переменной хn и т. д., то весь комплекс экологических факторов может быть представлен последовательностью (х 1, х 2, …, хn, …).Чтобы охарактеризовать множество всевозможных комплексов экологических факторов, получающих при различных значениях каждого из них, целесообразно ввести понятие пространства экологических факторов, или, другими словами, экологического пространства.

Пространством экологических факторов назовем евклидово пространство, координаты которого сопоставлены ранжированным экологическим факторам:

.

Для количественной характеристики воздействия экологических факторов на показатели жизнедеятельности особей, такие, как скорость роста, развития, плодовитость, продолжительность жизни, смертность, питание, метаболизм, двигательная активность и т. д. (пусть они нумеруются индексом k = 1, …, m), вводится понятие о ф у н к ц и я х о т к л и ка. Значения, принимаемые показателем с номером k на определенной шкале при варьировании экологических факторов, как правило, ограничены снизу и сверху. Обозначим через отрезок на шкале значений одного из показателей (k -го) жизнедеятельности экосистемы.

Функцией отклика k -го показателя на совокупность экологических факторов (х 1, х 2, …, хn, …) называется функция φk, отображающая экологическое пространство Е на шкалу I k:

,

которая каждой точке (х 1, х 2, …, хn, …) пространства Е сопоставляет число φk (х 1, х 2, …, хn, …) на шкале I k.

Хотя число экологических факторов потенциально неограничено и, следовательно, бесконечны размерность экологического пространства Е и число аргументов функции отклика φk (х 1, х 2, …, хn, …), в действительности удается выделить конечное число факторов, например n, с помощью которых можно объяснить заданную часть от полного варьирования функции отклика. Например, первые 3 фактора могут объяснить 80% общего варьирования показателя φ, первые 5 факторов – 95%, первые 10 – 99% и т. д. Остальные, не вошедшие в число указанных факторов, не оказывают определяющего воздействия на изучаемый показатель. Их влияние можно рассматривать как некоторый " экологический " шум, накладывающийся на действие императивных факторов.

Это позволяет от бесконечномерного пространства Е перейти к его n -мерному подпространству Е n и рассматривать сужение функции отклика φk на это подпространство:

,

причем , где εn +1 – случайный " экологический шум ".

Любому живому организму необходимы не вообще температура, влажность, минеральные и органические вещества или какие-либо другие факторы, а их определенный режим, то есть существуют некоторые верхние и нижние границы амплитуды допустимых колебаний этих факторов. Чем шире пределы какого-либо фактора, тем выше устойчивость, то есть толерантность данного организма.

В типичных случаях функция отклика имеет форму выпуклой кривой, монотонно возрастающей от минимального значения фактора xj s (нижний предел толерантности) до максимума при оптимальном значении фактора xj 0 и монотонно убывающей к максимальному значению фактора xj e (верхний предел толерантности).

Интервал Xj = [ xj s, xj e] называется интервалом толерантности по данному фактору, а точка xj 0, в которой функция отклика достигает экстремума, называется точкой оптимума по данному фактору.

Одни и те же экологические факторы неодинаково влияют на организмы разных видов, живущих вместе. Для одних они могут быть благоприятными, для других – нет. Важным элементом является реакция организмов на силу воздействия экологического фактора, отрицательное действие которого может возникать в случае излишка или недостатка дозы. Поэтому существует понятие благоприятной дозы или зоны оптимума фактора и зоны пессимума (диапазон значений дозы фактора, в котором организмы чувствуют себя угнетенно).

Диапазоны зон оптимума и пессимума являются критерием для определения экологической валентности – способности живого организма приспосабливаться к изменениям условий среды. Количественно она выражается диапазоном среды, в границах которого вид нормально существует. Экологическая валентность разных видов может быть очень разной (северный олень выдерживает колебание температуры воздуха от -55 к +25÷30°С, а тропические кораллы гибнут уже при изменении температуры на 5-6 °С). По экологической валентности организмы разделяются на стенобионты – с малой приспособленностью к изменениям среды (орхидеи, форель, дальневосточный рябчик, глубоководные рыбы) и эврибионты – с большей приспособленностью к изменениям окружающей среды (колорадский жук, мыши, крысы, волки, тараканы, камыш, пырей). В границах эврибионтов и стенобионтов в зависимости от конкретного фактора организмы разделяют на эвритермные и стенотермные (по реакции на температуру), эвригалинные и стеногалинные (по реакции на соленость водной среды), эврифоты и стенофоты (по реакции на освещение).

Чтобы выразить относительную степень толерантности, в экологии существует ряд терминов, в которых используются приставки стено -, что означает узкий, и эври - – широкий. Виды, имеющие узкий интервал толерантности (1), называются стеноэками, а виды с широким интервалом толерантности (2) – эвриэками по данному фактору. Для императивных факторов есть собственные термины:

- по температуре: стенотермный - эвритермный;

- по воде: стеногидрический – эвригидрический;

- по солености: стеногалинный – эвригалинный;

- по пищи: стенофагный – эврифагный;

- по выбору местообитания: стеноойкный – эвриойкный.

3.1.3. Закон лимитирующего фактора

Присутствие или процветание организма в данном местообитании зависит от комплекса экологических факторов. По каждому фактору имеется диапазон толерантности, за пределами которого организм не способен существовать. Невозможность процветания или отсутствие организма определяется теми факторами, значения которых приближаются или выходят за пределы толерантности.

Лимитирующим будем считать такой фактор, по которому для достижения заданного (малого) относительного изменения функция отклика требуется минимальное относительное изменение этого фактора. Если

то лимитирующим будет фактор хl, то есть лимитирующим является фактор, вдоль которого направлен градиент функции отклика.

Очевидно, что градиент направлен по нормали к границе области толерантности. И для лимитирующего фактора больше шансов при всех прочих равных условиях выйти за пределы области толерантности. То есть лимитирующим является тот фактор, значение которого наиболее близки к нижней границе интервала толерантности. Эта концепция известна как " закон минимума " Либиха.

Идея о том, что выносливость организма определяется самым слабым звеном в цепи его экологических потребностей, впервые была ясно показана в 1840г. химиком-органиком Ю. Либихом, одним из основоположников агрохимии, который выдвинул теорию минерального питания растений. Он был первым, кто начал изучение влияния разнообразных факторов на рост растений, установив, что урожай культур часто лимитируется не теми элементами питания, которые требуются в больших количествах, такими, например, как двуокись углерода и вода, поскольку эти вещества обычно присутствуют в среде в изобилии, а теми, которые требуются в ничтожнейших количествах, например, цинк, бор или железо, которых в почве очень мало. Вывод Либиха о том, что "рост растения зависит от того элемента питания, который присутствует в минимальном количестве", стал известен как либиховский "закон минимума".

Спустя 70 лет американский ученый В. Шелфорд показал, что не только вещество, присутствующее в минимуме, может определять урожай или жизнеспособность организма, но и избыток какого-то элемента может приводить к нежелательным отклонениям. Например, избыток ртути в организме человека по отношению к некоторой норме вызывает тяжелые функциональные расстройства. При недостатке воды в почве ассимиляция растением элементов минерального питания затруднена, но и избыток воды ведет к аналогичным последствиям: возможно задыхание корней, возникновение анаэробных процессов, закисание почвы и т.п. Избыток и недостаток рН в почве также снижает урожайность в данном месте. Согласно В. Шелфорду, факторы, присутствующие как в избытке, так и в недостатке, называются лимитирующими, а соответствующее правило получило название закона "лимитирующего фактора" или " закона толерантности ".

Закон лимитирующего фактора учитывается в мероприятиях по охране окружающей среды от загрязнения. Превышение нормы вредных примесей в воздухе и воде представляет серьезную угрозу здоровью людей.

Можно сформулировать ряд вспомогательных принципов, дополняющих "закон толерантности":

1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого.

2. Организмы с широким диапазоном толерантности ко всем факторам обычно наиболее широко распространены.

3. Если условия по одному экологическому фактору не оптимальны для вида, то может сузиться и диапазон толерантности к другим экологическим факторам.

4. В природе организмы очень часто оказываются в условиях, не соответствующих оптимальному диапазону того или иного экологического фактора, определенному в лаборатории.

5. Период размножения обычно является критическим; в этот период многие факторы среды часто становятся лимитирующими. Пределы толерантности для размножающихся особей, семян, эмбрионов и проростков обычно уже, чем для неразмножающихся взрослых растений или животных.

Действительные пределы толерантности в природе почти всегда оказываются уже, чем потенциальный диапазон активности. Это связано с тем, что метаболические затраты на физиологическую регуляцию при экстремальных значениях факторов сужают диапазон толерантности. При приближении условий к экстремальным значениям адаптация становится все более дорогостоящей, а организм – все менее защищенными от других факторов, например болезней и хищников.

3.1.4. Некоторые основные абиотические факторы

Абиотические факторы наземной среды. Абиотическая компонента наземной среды представляет совокупность климатических и почвенно-грунтовых факторов, состоящих из множества динамических элементов, воздействующих как друг на друга, так и на живые существа.

Главнейшие абиотические факторы наземной среды следующие:

1) Поступающая от Солнца лучистая энергия (радиация). Распространяется в пространстве в виде электромагнитных волн. Служит основным источником энергии для большинства процессов в экосистемах. С одной стороны, прямое воздействие света на протоплазму смертельно для организма, с другой – свет служит первичным источником энергии, без которого невозможна жизнь. Поэтому многие морфологические и поведенческие характеристики организмов связаны с решением этой проблемы. Свет – это не только жизненно важный фактор, но и лимитирующий, причем и на максимальном, и на минимальном уровнях. Около 99% всей энергии солнечной радиации составляют лучи с длиной волны 0.17÷4.0 мкм, в том числе 48% приходится на видимую часть спектра с длиной волны 0.4÷0.76 мкм, 45% – на инфракрасную (длина волны от 0.75 мкм до 1 мм) и около 7% - на ультрафиолетовую (длина волны менее 0.4 мкм). Преимущественное значение для жизни имеют инфракрасные лучи, а в процессах фотосинтеза наиболее важную роль играют оранжево-красные и ультрафиолетовые лучи.

2) Освещенность земной поверхности, связанная с лучистой энергией и определяющаяся продолжительностью и интенсивностью светового потока. Вследствие вращения Земли периодически чередуются светлое и темное время суток. Освещенность играет важнейшую роль для всего живого и организмы физиологически адаптированы к смене дня и ночи, к соотношению темного и светлого периодов суток. Практически у всех животных существуют так называемые циркадные (суточные) ритмы активности, связанные со сменой дня и ночи. По отношению к свету растения подразделяют на светолюбивые и теневыносливые.

3) Температура на поверхности земного шара определяется температурным режимом атмосферы и тесно связана с солнечным излучением. Зависит как от широты местности (угла падения солнечного излучения на поверхность), так и от температуры приходящих воздушных масс. Живые организмы могут существовать лишь в узких пределах диапазона температур – от -200°С до 100°С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние. Диапазон колебаний температуры в воде обычно меньше, чем на суше, и диапазон толерантности к температуре у водных организмов обычно уже, чем у соответствующих наземных животных. Таким образом, температура представляет важный и очень часто лимитирующий фактор. Температурные ритмы вместе со световыми, приливными и ритмами изменения влажности в значительной степени контролируют сезонную и суточную активность растений и животных. Температура часто создает зональность и стратификацию сред обитания.

4) Влажность атмосферного воздуха, связанная с насыщением его водяными парами. Наиболее богаты влагой нижние слои атмосферы (до высоты 1.5÷2 км), где концентрируется до 50% всей влаги. Количество водяного пара, содержащегося в воздухе, зависит от температуры воздуха. Чем выше температура, тем больше влаги содержит воздух. Для каждой температуры существует определенный предел насыщения воздуха парами воды, который называют максимальным. Разность между максимальным и данным насыщением носит название дефицита влажности (недостатка насыщения). Дефицит влажности - важнейший экологический параметр, поскольку он характеризует сразу две величины: температуру и влажность. Известно, что повышение дефицита влажности в определенные отрезки вегетационного периода способствует усиленному плодоношению растений, а у ряда животных, например насекомых, приводит к размножению вплоть до так называемых ²вспышек². Поэтому на анализе динамики дефицита влажности основаны многие способы прогнозирования различных явлений в мире живых организмов.

5) Осадки, тесно связанные с влажностью воздуха, представляют собой результат конденсации водяных паров. Атмосферные осадки и влажность воздуха имеют определяющее значение для формирования водного режима экосистемы и, таким образом, входят в число наиболее важных императивных экологических факторов, так как обеспеченность водой – главнейшее условие жизнедеятельности любого организма, от микроскопической бактерии до гигантской секвойи. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс, или так называемых ²погодных систем². Распределение осадков по временам года – крайне важный лимитирующий фактор для организмов. Осадки – одно из звеньев в круговороте воды на Земле, причем в их выпадении прослеживается резкая неравномерность, в связи с чем выделяют гумидные (влажные) и аридные (засушливые) зоны. Максимум осадков в тропических лесах (до 2000 мм/год), минимум – в пустынях (0.18 мм/год). Зоны с количеством осадков менее 250 мм/год уже считаются засушливыми. Как правило, неравномерное распределение осадков по временам года встречается в тропиках и субтропиках, где нередко хорошо выражены влажный и сухой сезоны. В тропиках этот сезонный ритм влажности регулирует сезонную активность организмов (особенно размножение) примерно таким же образом, как сезонный ритм температуры и света регулирует активность организмов умеренной зоны. В умеренных климатах осадки обычно распределены по сезонам более равномерно.

6) Газовый состав атмосферы. Состав ее относительно постоянен и включает преимущественно азот и кислород с примесью незначительного количества СО2 и аргона. Иные газы – в следовых количествах. Кроме того, в верхних слоях атмосферы содержится озон. Обычно в атмосферном воздухе присутствуют твердые и жидкие частицы воды, оксидов различных веществ, пыли и дыма. Азот – важнейший биогенный элемент, участвующий в образовании белковых структур организмов; кислород, в основном поступающий от зеленых растений, обеспечивает окислительные процессы; углекислый газ (СО2) является естественным демпфером солнечного и ответного земного излучения; озон выполняет экранирующую роль по отношению к ультрафиолетовой части солнечного спектра, губительного для всего живого. Примеси мельчайших частиц влияют на прозрачность атмосферы, препятствуют прохождению солнечных лучей к поверхности Земли. Концентрации кислорода (21% по объему) и СО2 (0.03% по объему) в современной атмосфере являются до какой-то степени лимитирующими для многих высших растений и животных.

7) Движение воздушных масс (ветер). Причина возникновения ветра – перепад давления, вызванный неодинаковым нагревом земной поверхности. Ветровой поток направлен в сторону меньшего давления, то есть туда, где воздух более прогрет. Сила вращения Земли воздействует на циркуляцию воздушных масс. В приземном слое воздуха их движение оказывает влияние на все метеорологические элементы климата: режим температуры, влажности, испарение с поверхности Земли и транспирацию растений. Ветер – важнейший фактор переноса и распределения примесей в атмосферном воздухе. Ветер выполняет важную функцию транспорта вещества и живых организмов между экосистемами. Кроме того, ветер оказывает непосредственное механическое воздействие на растительность и почву, повреждая или уничтожая растения и разрушая почвенный покров. Подобная деятельность ветра наиболее характерна для открытых равнинных пространств суши, морей, побережий и горных районов.

8) Давление атмосферы. Давление нельзя назвать лимитирующим фактором непосредственного действия, хотя некоторые животные, несомненно, реагируют на его изменения; однако давление имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие на организмы.

Абиотические факторы почвенного покрова. Почвенные факторы носят явно эндогенный характер, поскольку почва – это не только ²фактор² среды, окружающей организмы, но и продукт их жизнедеятельности. Почва – это тот каркас, фундамент, на котором строится почти любая экосистема.

Почва – итоговый результат действия климата и организмов, особенно растений, на материнскую породу. Таким образом, почва состоит из исходного материала – подстилающего минерального субстрата и органического компонента, в котором организмы и продукты их жизнедеятельности перемешаны с тонко измельченным и измененным исходным материалом. Промежутки между частичками заполнены газами и водой. Текстура и пористость почвы – важнейшие характеристики, во многом определяющие доступность биогенных элементов растениям и почвенным животным. В почве осуществляются процессы синтеза, биосинтеза, протекают разнообразные химические реакции преобразования веществ, связанные с жизнедеятельностью бактерий.

3.1.5. Биотические факторы

Под биотическими факторами понимают совокупность влияний жизнедеятельности одних организмов на другие.

Взаимоотношения между животными, растениями, микроорганизмами (их еще называют коакциями) чрезвычайно многообразны. Их можно разделить на прямые и косвенные, опосредствованы через изменение своим присутствием соответствующих абиотических факторов.

Взаимодействия живых организмов классифицируют с точки зрения их реакции друг на друга. В частности, выделяют гомотипические реакции между взаимодействующими особями одного и того же вида и гетеротипические реакции при коакциях между индивидуумами разных видов.





Дата публикования: 2015-09-17; Прочитано: 455 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...