Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Подставим в (3) данные векторы 1, 2, 3, 4 , получим



Так как , то векторы линейно независимы и они образуют базис линейного пространства R4. Для вычисления координат вектора в этом базисе составим систему линейных уравнений из координат векторов 1, 2, 3, 4 и и решим ее методом Гаусса:

*

Составим матрицу системы и преобразуем ее к треугольному виду, т.е. будем последовательно получать нули ниже главной диагонали матрицы, на которых находятся элементы 2, 2, 8, 3.

Разделим каждый элемент I строки на 2, затем полученную I строку умножим последовательно на -4; -3; -2 и сложим соответственно со II; III и IV строками, получим:

~

Разделим III строку на (-2) и поменяем ее местами со II строкой.

Новую II строку умножим последовательно на 3; -2 и сложим соответственно с III и IV строками, получим:

III строку умножим на 5, IV на 6 и сложим их, получим:

Таким образом получим матрицу ступенчатого вида, например х1, х2, х3, х4,

откуда х4 = 3, х3 = -1, х2 = 0, х1 = 2.

Решение системы * (2; 0; -1; 3) образует совокупность координат вектора в базисе 1, 2, 3, 4, т.е. в этом базисе (2; 0; -1; 3) или = 2 1 - 3 + 3 4.

Пример 2. Даны координаты вершин пирамиды А1 (2; 1; 0), А2 (3; -1; 2), А3 (13; 3; 10), А4 (0; 1; 4).

Найти: 1) длину ребра А1А2;

2) угол между ребрами А1А2 и А1А4;

3) угол между ребрами А1А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;

5) объем пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины А4 на грань А1 А2 А3. Сделать чертеж.

Решение.

1) Расстояние d между точками А1, y1, z1) и В2, y2, z2), определяется по формуле

(1)

Подставим в (1) координаты точек А1 и А2, находим длину ребра А1А2:

А1А2=

2) Угол между ребрами А1А2 и А1А4 равен углу φ между направляющими векторами этих ребер и . Косинус угла между двумя векторами = скалярному произведению этих векторов, деленному на произведение их модулей:

(2)

Координаты вектора с началом в точке А1 (x1, y1, z1) и концом в точке А2 (x2, y2, z2)

(3)

Применяя (3), получим (1; -2; 2), (-2; 0; 4). Применяя (1), получим модули векторов

Скалярное произведение двух векторов с заданными координатами равны сумме произведений соответствующих координат, т.е если 1, а2, а3), (), то их скалярное произведение

(4)

Применяя (4), найдем . Следовательно,

3) Угол между ребром А1А4 и гранью А1 А2 А3 равен углу φ между направляющим вектором данного ребра и нормальным вектором плоскости А1 А2 А3.

Уравнение плоскости, проходящей через 3 данные точки А11, y1, z1) и А22, y2, z2), А33, y3, z3) имеет вид

(5)

Подставим в (5) координаты точек А1 А2 А3, получим:

Разложим определитель по элементам I строки:

Сократив на (-12), получим уравнение плоскости А1 А2 А3:

2x – 4 – y + 1 - 2z = 0

2x – y - 2z – 3 = 0

Если уравнение плоскости α задано в каноническом виде Ax + By + Cz + Д = 0, то ее нормальный вектор α (А; В; С), т.е. нормальный вектор плоскости А1 А2 А3 имеет координаты (2; -1; -2). Синус угла α между вектором и плоскостью А1 А2 А3

(6)

Найдем скалярное произведение по формуле (4):

= -2 2 + 0 (-1) + 4 (-2) = - 4 – 8 = -12.





Дата публикования: 2015-09-17; Прочитано: 251 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.015 с)...