Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Модель точки заказа



От детерминированной базовой модели перейдем к более сложным, стохастическим моделям. Первой в их ряду стоит модель точки заказа. Введем в рассмотрение новый стохастический фактор – случайные колебания спроса. При этом величина годового объема спроса становится случайной величиной с нормальным законом распределения. Параметрами этой случайной величины являются:

D – среднее значение годового объема спроса, шт/год;

SD – среднеквадратическое отклонение (СКО) годового спроса, шт/год.

Случайные колебания рыночного спроса создают для предприятия риск непокрытия спроса вследствие нехватки товарных запасов на складе. Поскольку запасы рассчитаны на покрытие только среднего объема спроса, то в случае, когда потребительский спрос за период Т превысит свое среднее значение, часть спроса останется неудовлетворенной. Вероятность события, при котором предприятия не может удовлетворить часть спроса, равна 50%, поскольку спрос может отклониться в большую и меньшую сторону от своего среднего значения с равной вероятностью.

Для того, чтобы избежать нежелательной для любого предприятия ситуации, когда спрос превышает запасы, или хотя бы уменьшить вероятность ее наступления (снизить риск непокрытия), на складе помимо текущего запаса создается также страховой запас. Текущий запас предназначается для покрытия среднего объема спроса за период Т. Тем самым он обеспечивает непрерывность торгового процесса, который состоит из циклов потребления запасов и их периодического восполнения. Страховой запас используется для покрытия дополнительного спроса, который возникает вследствие случайных колебаний на рынке.

Разумеется, что никакой склад не может позволить себе иметь неограниченный страховой запас. Вместе с тем, чисто теоретически амплитуда случайных колебаний спроса при нормальном распределении может быть сколь угодно большой. Поэтому всегда существует вероятность события, когда для покрытия потребительского спроса не хватит не только текущего, но и страхового запаса. Однако, чем больше страховой запас, тем меньше вероятность такого события.

Зададимся вопросом: какой величины должен быть страховой запас, чтобы обеспечить вероятность покрытия спроса на уровне, скажем, 95%? Ответ на этот вопрос будет получен в ходе решения следующей задачи:

Дано: D = 125000 – средний объем годового спроса, шт/год; SD = 1480 – СКО годового спроса, шт/год; LT = 5 дн; C = 50 – стоимость единицы товара, руб/шт; S = 780 – затраты на доставку/производство партии товара (их постоянная часть, не зависящая от размера партии), руб; I = 10 – годовая норма прибыли (или ставка банковского процента), %/год; k = 4,50 – удельные издержки непокрытия, руб/шт; Pr = 95% – вероятность покрытия спроса за период LT (данный параметр позволяет регулировать величину страхового запаса, а вместе с ним и надежность модели).

Требуется рассчитать параметры модели точки заказа: EOQ; ROP; AIL; T; N; TC; SL (Service Level) – уровень сервиса, %.

Решение

1. Оптимальная партия поставки, EOQ

Формулы расчета перечисленных параметров базовой модели лишь частично отличаются от аналогичных параметров базовой модели. Так, например, формула расчета оптимальной партии поставки остается в модели точки заказа без изменения:

шт.

2. Точка заказа, ROP

Годовой объем спроса представляет собой случайную величину N, распределенную по нормальному закону с параметрами (D, SD). Тогда объем спроса за период поставки LT также является случайной величиной NLT, распределенной по нормальному закону с параметрами (XLT, SLT), которые рассчитываются по формулам:

= 125 000 ´ 5 / 365 = 1712,3

= 1480 ´ (5 / 365)0,5 = 173,2

Здесь XLT – средний объем спроса за период поставки LT, шт; SLT – среднеквадратическое отклонение объема спроса за период LT, шт.

Напомним, что в базовой модели точка заказа определялась по формуле: ROP = XLT = d´LT = 1712,3. Теперь к этой величине надо добавить величину страхового запаса, которая определяется следующим образом:

Рис. 2.4. Функция нормального распределения и величина страхового запаса

На этом графике используются следующие обозначения: x – множество значений случайной величины NLT, распределенной по нормальному закону, f(x) – функция нормального распределения, F(x) – интегральная функция нормального распределения.

Кривая функции нормального распределения напоминает по форме колокол. Вершина колокола находится над точкой XLT – это наиболее вероятное значение случайной величины NLT. По мере отклонения от точки XLT влево или вправо кривая понижается – вероятность значений уменьшается. Форма колокола определяется значением величины SLT. При большом значении SLT амплитуда колебаний случайной величины NLT увеличивается – колокол будет иметь низкую тупую вершину и широкие пологие склоны. При небольшом значении SLT амплитуда колебаний случайной величины NLT уменьшается – колокол будет иметь высокую заостренную вершину и короткие крутые склоны.

Выберем на оси Ox некое конкретное значение x0. Мы можем определить значение функции нормального распределения f(x­0), а также значение интегральной функции нормального распределения F(x0). Интегральная функция F(x0) равна площади закрашенной фигуры, которая на оси Ox ограничена интервалом [–∞, x0]. В данном конкретном случае закрашено 95% площади фигуры. Это означает, что случайная величина NLT примет значение, не превосходящее величину x0, с вероятностью 0,95, т.е. F(x0) = P(NLT < x0) = 0,95.

Вернемся к точке заказа и определим новую формулу ее расчета:

ROP = XLT + (x0 – XLT­) = x0

Для того, чтобы найти величину x0, воспользуемся следующим приемом. Рассчитаем нормированную величину z по формуле:

z0 = (x0 – XLT­) / SLT­

Величина z представляет собой случайную величину, которая также распределена по нормальному закону. При этом математическое ожидание величины z равно нулю, а среднее квадратическое отклонение – единице. Тогда справедливо выражение:

F(x0) = F’((x0 – XLT­) / SLT) = F’(z0),

где F’(z) – интегральная функция нормированной случайной величины z.

Пусть F’(z0) = 0,95. Тогда по таблице А (см. приложение 1) определяем, что z0 = 1,64. И тогда x0 = XLT + z0 ´ SLT или:

ROP = d ´ LT + z0 ´ SLT = 1712,3 + 1,64 ´ 173,2 = 1712,3 + 284 = 1996,3» 1997.

Таким образом, оформление нового заказа производится при снижении запасов до уровня 1997шт. При этом величина страхового запаса составляет 284 шт, который позволяет обеспечить гарантированное покрытие спроса в течение периода поставки LT = 5 дн (т.е. с момента оформления заказа до момента его выполнения) с вероятностью 95%.

Чуть ниже мы проанализируем, каким образом с помощью параметра Pr можно регулировать величину страхового запаса и какие это будет иметь последствия для надежности системы в целом.

3. Средний уровень запасов, AIL:

AIL = Q / 2 + z0 ´ SLT

Данная формула состоит из двух слагаемых: средний уровень текущего запаса и страховой запас. Производим расчет: AIL = 6245 / 2 + 1,64 ´ 173,2 = 3122,5 + 284,0 = 3406,5 шт.

Следующие два показателя остаются без изменений.

4. Количество поставок в течение года, N: 5. Период заказа, Т:
N = D / Q = 125000 / 6245 = 20 T = Q / D = 6245 / 125000 = 0,05 год, или T = 365 ´ (6245 / 125000) = 18 дн.

6. Общие затраты, TC

В общих затратах, помимо стоимости доставки и стоимости хранения текущего запаса, учитываются две новые стоимостные составляющие: стоимость хранения страхового запаса и издержки непокрытия:

Первые два слагаемых подробно рассматривались в базовой модели. Рассмотрим два последних слагаемых. Напомним, что стоимость хранения единицы продукции в течение года рассчитывается по формуле: h = IC, а величина страхового запаса – это z0´SLT. Тогда третье слагаемое – это годовые затраты на хранение страхового запаса.

В четвертом слагаемом появляется новое условное обозначение: E(z) – интегральная функция непокрытия случайной величины Z. Формула функции E(z):

Функция E(z) используется для оценки наиболее вероятного объема непокрытия, т.е. той части спроса, которую фирма не сможет удовлетворить из-за отсутствия товаров на складе. Так, за период LT наиболее вероятный объем непокрытия составит величиу E(z0) ´ SLT, шт. Коэффициент k – удельные издержки непокрытия, т.е. те потери, которые несет фирма при непокрытии одной единицы продукции, на которую предъявлен спрос на рынке. Тогда выражение k´E(z0)´SLT означает издержки непокрытия за период LT, которые умножаются на количество поставок в течение года, или количество периодов LT в течение года: N = D / Q.

Определить величину E(z0) можно с помощью таблицы B (см. приложение). Ее структура повторяет структуру таблицы A. Определим величину E(z0) при z0 = 1,64. Разобьем величину z0 на два слагаемых: z0 = 1,6 + 0,04. Найдем строку и столбец с соответствующими значениями и на их пересечении отыщем ячейку, которая будет содержать искомое значение: E(z0) = E(1,64) = 0,0211.

Теперь произведем расчет общих затрат:

Итак, годовые затраты на управление запасами составляют 33 386 руб/год.

7. Уровень сервиса, SL

Уровень сервиса является показателем надежности системы запасов и представляет собой среднюю вероятность удовлетворения конкретного заказа, поступающего на склад от потребителя. Формула расчета величины SL:

Здесь величина (D/Q)´E(z0)´SLT представляет собой оценку наиболее вероятного годового объема непокрытия.

Произведем расчет: SL = 1 – 0,0211 ´ 173,2 / 6245 = 0,9987, или 99,87%. Отметим, что это очень высокий показатель надежности системы и что он гораздо больше величины Pr = 0,95. Объясняется это тем, что величина Pr отражает вероятность покрытия спроса только за период LT, когда текущий уровень запасов оказывается ниже точки заказа ROP. Во всех остальных случаях, когда уровень запасов выше точки заказа, вероятность покрытия, естественно, составляет 100%. В среднем же за год вероятность покрытия равна 99,94%.

Сравнить величины Pr и SL можно, используя следующую таблицу:





Дата публикования: 2015-04-10; Прочитано: 374 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...