Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Особенности передачи речи по цифровым каналам связи



В случае акустических данных (голоса) информацию можно представить непосредственно с помощью электромагнитного сигнала, имеющего такой же спектр. Впрочем, существует необходимость нахождения компромисса между точностью воспроизведения звука, передаваемого электрическими средствами и стоимостью самой передачи, повышающейся при увеличении ширины полосы. Спектр речевого сигнала находится в диапазоне приблизительно от 100 Гц до? кГц, хотя и более узкая полоса также даст приемлемое воспроизведение речи. Стандартным для звукового канала является спектр от 300 до 3400 Гц. Этого достаточно для передачи речи, также такой выбор сводит к минимуму требуемую пропускную способность передачи и позволяет использовать достаточно недорогие телефонные аппараты. Телефонный микрофон преобразует входящий акустический сигнал в электромагнитный сигнал, находящийся в диапазоне от 300 до 3400 Гц. Затем этот сигнал передается через телефонную сеть приемнику, который и воспроизводит его как акустический сигнал.

Важнейшее преимущество цифровой связи состоит в том, цифровая техника позволяет обеспечить любое наперед заданное качество связи. Для цифровой передачи речи необходимо произвести аналого-цифровое преобразование речевого сигнала: подвергнуть аналоговый сигнал дискретизации, квантованию и кодированию. Совокупность этих операций называется импульсно-кодовой модуляцией (ИКМ). Для точного описания формы речевого сигнала, согласно теореме Котельникова, его дискретизацию приходится проводить с частотой 8 кГц (т. е. брать отсчеты через каждые 125 мкс), а для получения нормального качества воспроизведения речи квантовать каждый отсчет по шкале, разбитой на 8192 уровня (при выборе равномерной шкалы квантования). Чтобы закодировать каждое значение отсчета с помощью двоичного числа, потребуется 13 разрядов. В результате для передачи телефонного разговора с помощью последовательности двоичных импульсов необходима скорость 8х13=104 кбит/с (что соответствует при оптимальном кодировании полосе частот 52 кГц). Сравнивая это число с полосой частот в 3100 Гц, которая требуется для аналоговой передачи, нельзя не поразиться колоссальному росту необходимой полосы, которым приходится расплачиваться за преимущества цифровой передачи. Естественно попытаться при реализации цифровой системы передачи понизить скорость передачи.

Первый шаг в этом направлении довольно очевиден. Квантование на 213 уровней оказывается необходимым потому, что уровни аналоговых речевых сигналов могут изменяться в диапазоне 60 дБ. При этом сигналы высокого уровня при равномерной шкале квантования квантуются с таким же шагом, что и сигналы низкого уровня. Однако человеческая речь характеризуется уникальными статистическими свойствами, одно из которых проиллюстрировано на рисунке 6.1. На оси абсцисс отложены амплитуды сигнала, нормированные на среднеквадратическое значение величины таких амплитуд в типичном канале связи, а на оси ординат – вероятность. Для большинства каналов речевой связи доминируют очень низкие тона; 50% времени напряжение, характеризующее энергию обнаруженной речи, составляет менее четверти среднеквадратического значения. Значения с большими амплитудами встречаются довольно редко; только 15% времени напряжение превышает среднеквадратическое значение. Поэтому можно сделать вывод о том, что так как восприятие сигналов органами слуха человека пропорционально логарифму уровня сигнала, то естественно было бы сигналы высокого уровня квантовать более грубо, а низкого уровня - более точно. Применяя нелинейное квантование с использованием логарифмического закона, можно обойтись восемью разрядами на отсчет, сохранив почти такое же качество передачи. В результате скорость передачи двоичных разрядов окажется равной 64 кбит/с. Именно эта скорость получила самое широкое распространение, она зафиксирована в рекомендации МККТТ С.711, и на ней работает аппаратура ИКМ во многих странах.

Рисунок 6.1 Статистическое распределение амплитуд речи одного лица

Аналоговый сигнал имеет большую избыточность. Это позволяет предсказывать очередной отсчет и передавать только разницу между фактическим и предсказанным значением каждого отсчета. Если применить хорошую схему предсказания, изменение амплитуды приращения сигнала окажется меньше изменения амплитуды самого сигнала, что приведет к уменьшению количества передаваемой информации. На этом принципе строится дифференциальная ИКМ (ДИКМ) и адаптивная дифференциальная ИКМ (АДИКМ), которая позволяет понизить скорость передачи речи до 32 кбит/с и ниже за счет дальнейшего усложнения приемопередающей аппаратуры. Продолжая усложнять аппаратуру, можно довести скорость передачи речи до 100-300 бит/с. Можно представить себе, например, на передающей стороне преобразователь речи в текст, а на приемной стороне - читающую машину. Известны пути дальнейшего снижения скорости передачи речи, но не будем на этом останавливаться. Дело в том, что аппаратура цифровой передачи речи со скоростью 64 кбит/с всех удовлетворила потому, что она оказалась работоспособной при использовании самых простых симметричных кабелей с парной скруткой. Аппаратура ИКМ-30 начала свое триумфальное шествие с уплотнения соединительных линий между городскими телефонными станциями. Там, где раньше по кабельной паре можно было организовать соединительную линию для передачи лишь одного разговора, аппаратура ИКМ-30 позволила организовать по этой же паре передачу 30 разговоров. О лучшем использовании такой пары с помощью аналоговой аппаратуры многоканальной связи не могло быть и речи. Позднее появились аппаратура ИКМ-120 и другие высокопроизводительные системы, работающие по коаксиальным кабелям и волоконным световодам, и острота вопроса об уменьшении скорости передачи разговорных сигналов ниже 64 кбит/с в сетях проводной связи практически была снята. Даже многочисленные разработки аппаратуры цифровой передачи со скоростью 32 кбит/с, реализованные во многих странах на основе принципа АДИКМ, не получили достаточно широкого применения. Баланс между увеличением пропускной способности каналообразующей аппаратуры и сложностью оконечного оборудования в проводной связи пока так и не склонился в пользу первого решения.

Совсем другие перспективы открылись в конце 1980-х - начале 1990-х годов, когда начали развиваться сотовые системы цифровой радиотелефонной связи. В отличие от проводных сетей, где расширение пропускной способности возможно за счет прокладки новых линий, т. е. возобновления ресурсов пропускной способности, в радиосетях действует жесткий закон тесноты в эфире, и приходится иметь дело с невозобновляемым ресурсом радиочастот. Правда, идея сотовой связи как раз и состоит в возобновлении ресурса радиочастот путем повторения частоты передачи на территории, до которой не доходит сигнал той же частоты от мешающей радиостанции. Но возможности такого возобновления ресурса и здесь ограничены, поэтому дальнейшее усложнение аппаратуры ради снижения скорости передачи оказывается оправданным.

Например, в принятой в большинстве стран Европы системе сотовой цифровой связи GSM стандартные скорости передачи речи составляют 13 и 6,5 кбит/с. Для осуществления подобной системы передачи пришлось обратиться к более глубокому проникновению в механизм речеобразования.

Как известно, один из важнейших результатов современной теории передачи информации состоит в рекомендации разделения задач кодирования источника и кодирования канала. В задачу кодирования источника информации входит описание передаваемого сообщения в максимально экономной форме, т. е. удаление избыточности в сообщении. Полученное таким образом сжатое сообщение становится более уязвимым к воздействию помех и может оказаться искаженным при передаче. Поэтому после кодирования источника применяются кодирование канала, в задачу которого входит защита передаваемого сообщения от помех. Кодирование канала требует внести в передаваемое сообщение некоторую избыточность, но не случайную, которая присутствовала в первоначальном сообщении, а строго обоснованную теоретически и которая гарантирует оговоренное качество передачи.

Итак, имеется цифровая версия аналогового речевого сигнала, т. е. функция, описывающая, например, закон изменения тока во времени. Из такого сигнала нужно попытаться удалить избыточность. Эту задачу можно решать несколькими методами. Один из них - попытаться найти избыточность путем чисто математического анализа рассматриваемой функции. Другой путь решения задачи - анализ акустических характеристик этой функции (с точки зрения ее восприятия органами слуха). Наконец, можно искать избыточность моделированием самого процесса речеобразования. Именно последний из перечисленных методов нашел применение в современных системах цифровой радиосвязи.





Дата публикования: 2014-10-17; Прочитано: 2206 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...