Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Межпредметные связи



Темы, изучаемые в процессе трудового обучения в IV—VIII классах Соответствующие темы других предметов
IV класс Организация рабочего места Устройство рабочего верстака Технический рисунок Чертеж детали Древесина как конструкционный материал Гвозди, наждачная бумага, красители Инструменты и приспособления. Приемы и операции   Фанера Инструменты и приспособления для обработки фанеры Технология обработки тонкого листового металла и проволоки     Машины     Электрические машины   V класс Чертеж   Древесина   Природоведение, II—III кл. Породы деревьев. Математика, VI кл. Измерение углов Природоведение, III кл. Рисунок и план Математика, IV кл. Отрезок и его длина. Фигура   Природоведение, III кл. Растения леса. Породы деревьев Природоведение, III кл. Нефть, железная руда. Математика, IV кл. Шкалы Математика, III кл. Порядок выполнения действий. Вертикальное направление (отвес-угольник). Природоведение. Математика, IV кл. Построение треугольников Природоведение, III — IV кл. Растения леса. Береза. Растворы в природе Математика, III —IV кл. Ломаная и много угольник. Прямоугольный параллелепипед. Измерения углов. Транспортир Природоведение, III — IV кл. Орган зрения — глаз. Железо, сталь. Свойства металлов. Математика, IV кл. Прямая. Прямоугольный параллелепипед. Площади. Перпендикуляр ные прямые Природоведение, III — IV кл. Добыча угля с помощью машин. Железная руда. Самолеты, вертолеты. Электрические машины Природоведение, IV кл. Генератор, батарея для карманного фонарика, электролампочка, провод, электромагнит, электроизоляция   Природоведение, III кл. План местности. Математика, V кл. Сравнение отрезков и углов. Линия, фигура Природоведение, III кл. Растения леса. Биология, V кл. Строение стебля. Хвойные растения
Темы, изучаемые в процессе трудового обучения в IV—VIII классах Соответствующие темы других предметов
Инструменты и приспособления для обработки древесины     Сверлильный станок     Изготовление изделий из проволоки     Электрические работы     Изготовление изделий из тонколистового металла   VI класс Физико-механические свойства древесины     Шиповые соединения     Приспособления для нанесения красителей Долбление древесины   Изготовление изделий из листового материала Природоведение, III — IV кл. Руда, сталь, свойства металлов. Математика, IV—Укл.-Параллельные, перпендикулярные линии, угол. Шкалы. Прямоугольный параллелепипед. Поверхность, плоскость Природоведение, IV кл. Использование силы ветра в ветряных двигателях, воды в выработке электроэнергии; действия электрического тока. Математика, V кл. Отношение величин. Окружность, радиус, диаметр. География, V кл. Использование воды и ветра Природоведение, III —IV кл. Железо, сталь, свойства металлов. Математика, III —V кл. Окружность, ломаная, угольник, прямо угольный параллелепипед, отрезок, длина отрезка, фигура Природоведение, IV кл. Батарея для карманного фонаря, генератор, электродвигатель, электрическая цепь, электрический ток Природоведение, IV кл. Свойства металлов. Математика, Vici. Отрезок, прямая, угол, измерение и построение углов. Плоскость   Биология, V кл. Хвойные и голосеменные растения. Растение как целостный организм. Физика, VI кл. Строение вещества. Молекулы. Три состояния вещества Математика, IV кл. Параллельные и перпендикулярные линии. Математика, VI кл. Плоскость, поверхности. Физика, VI кл. Трение. Взаимодействие молекул Природоведение, III— IVкл. Нефть. Физика, VI кл. Явление смачивания. Закон Паскаля Природоведение, IV кл. Свойства металлов. Физика, VI кл. Давление. Математика, VI кл. Плоскость, угол Физика, VI кл. Сила. Сложение сил. Сила трения. Расчет давления

Вот некоторые из дидактических приемов.

Нацеленность на осмысление изучаемых явлений и формирование понятий.

Когда непростые технические понятия основываются на уже имеющихся знаниях, получающих дополнительную подпитку, это всегда оборачивается глубоким пониманием и уверенным использованием их на практике. Поясним это на отдельных примерах.

Понятие о клине дети получают по физике довольно рано. И в первой же теме программы «Технология обработки древесины» встречается понятие клинообразной формы режущей части. Это — в V классе, а в VI с первых уроков работы на станке по дереву продолжается знакомство с элементами режущей части стамесок для точения по дереву. В программе VII класса требуется раскрытие основных углов резцов и фрез.

По существу, речь идет об одном и том же — геометрии режущих инструментов. Однако из-за разницы в возрасте учащихся и их

знаниях, необходимо в первом случае связать новые знания с бытовым опытом, а в последнем уже воспользоваться их представлениями о сложении и разложении сил. Каждый легко поймет, что легко расколоть чурбак с ровными слоями древесины и для этого лучше иметь острый топор, и на оборот: если дерево с переплетенными волокнами, то разделить его можно только колуном.

Графически изобразив клин, можно показать, почему он дает выигрыш в силе. Для объяснения пользуются рисунком, выполняемым в динамике (рис. 23).

Но у детей необходимо сформировать одновременно и осмысленное понимание того, почему же в этом случае не делают инструментов с малым углом заострения. Возникает как будто явное противоречие между теорией и практикой. Действительно, чем тверже обрабатываемый материал, тем больше должна быть сила, преодолевающая силы сцепления между частицами металла, а для этого клин должен быть острым, «тонким». На практике же резцы для обработки твердых металлов делают, наоборот, с большим! углом заострения. На самом деле клин (резец) становится непрочным, если он тонкий, ломаясь от тех же сил, которые он вызывает.

 

Рис. 23. Поясняющий рисунок учителя

Такое осмысленное понимание у детей, сформированное и уяс-, ненное, будет перенесено и на зубило, затем будет продолжено на изучении резьбы, где наклонная плоскость (известная из физики, как простейший механизм) позволяет сформировать осмысленное представление о винтовой линии, которая получается при охвате цилиндра наклонной плоскостью. Самое главное в таком под-: ходе состоит в том, что резьба рассматривается в единстве с «золотым правилом механики: выиграв в силе, проигрываем в пути, и наоборот. С этой точки зрения, высота наклонной плоскости является шагом, а основание — диаметром, длиной окружности цилиндра, на котором имеется резьба. Учащиеся прекрасно представляют винтовую линию как наклонную плоскость на примере ходового винта или пандуса многоэтажного гаража для автомобилей, куда машины поднимаются по винтовой наклонной плоскости; Обучение логическому осмыслению и изложению учебного материала — важный дидактический момент. Следует обращать внимание учащихся на необходимость не только осмысливать изучаемые явления, но и логично их излагать. Они получают представления o передаче логики повествования на предметах гуманитарного цикла, но не в меньшей степени это должно культивироваться на уроках технологии. Например, старшие школьники могут знать из физики об эффекте Лейденфроста. Это — обнаруженное ученым «странное» поведение капли воды, попавшей на горячую сковородку. Оказывается, что испарение воды, попавшей на нагретую металлическую; поверхность, зависит от температуры этой поверхности действительно странным образом. Если она нагрета до немногим более 100 градусов, то капли растекаются по ней и быстро испаряются. Но если температура 400 градусов и выше, то капля, попав на поверхность, отскакивает от нее как мячик и начинает «бегать», как на паровой подушке. Тонкая прослойка пара плохо проводит тепло, и время жизни капли увеличивается в сто—двести раз.

Предоставьте теперь самим учащимся перебросить логический мостик ко многим технологическим процессам, связанным с использованием жидкостей, и, конечно, к изучаемой в школьномкурсе теории электролитической диссоциации. Умение правильно мыслить и излагать свои мысли формируется, если этому качеству уделяется внимание из урока в урок. Порекомендуйте учащимся прочесть интереснейшую книгу А. А. Ивина «Искусство правильно мыслить» (М., 1986) — она введет школьников в мир основных принципов и операций человеческого мышления. Все это будет способствовать углублению стихийно сложившейся логической интуиции учащихся, выработке у них навыков последовательного1 и доказательного мышления, рассуждения.

Замена объяснительно-иллюстративного метода проблемным, частично-поисковым уже упоминалась ранее. Этот дидактический прием в преподавании технологии неизбежен, если учитель, поставив перед собой задачу системного подхода к формированию умственной самостоятельности у учащихся, осознает, что традиционные методы не всегда являются лучшими «инструментами» в работе.

В самом деле, при первых же проточках деталей на токарном станке возникает вопрос: почему прогибается длинная деталь? Прогиб — это деформация, возникающая под действием силы. Но разве на короткие детали сила не воздействует? Воздействует. Есть и деформация, но она очень мала, даже если при резании развиваются большие силы. Тонкая и длинная деталь потому и прогибается, что в результате большой деформации возникает соответственно большая упругая сила, которая по третьему закону Ньютона должна быть равной, но противоположно направленной силе, вызывающей деформацию. Показав явление, именуемое в технике «бочкообразностью», и сказав, что следствие и способ устранения должны найти сами учащиеся, можно надеяться на решение (см. рис. 24).

Самое интересное, что учитель технологии проблемную ситуацию может создать на любом, без преувеличения, уроке или его этапе, при объяснении каждого раздела программы.

Еще пример в подтверждение сказанного. Изучая устройство задней бабки токарного станка, учитель задает вопрос: почему конический хвостовик сверла или центра так надежно, не проворачиваясь, закрепляется в пиноли? Рассуждения школьников могут опираться на их личный опыт: многие знают, что застрявший в полене тонкий топор труднее вытащить, тогда как толстый при небольшом усилии выходит сам. Теперь учащиеся логически подойдут к выводу, что при значениях углов конуса Морзе большая сила, с которой центр действует хвостовиком на коническое отверстие пиноли, вызывает возникновение значительных сил трения, которые больше, чем крутящий момент при сверлении

Рис. 24. Влияние сил резания на форму детали

.

Перенос знаний возможен и при связи с гуманитарными дисциплинами, в частности такими, казалось бы, далекими от трудового обучения, как литература.

Например, в романе Дюма «Двадцать лет спустя» есть эпизод, когда один из героев оставлял при поездке знаки для друзей, делая их алмазом на стекле. Как удобно после этого переходить к понятию твердости как степени сопротивления твердого тела какому-либо механическому воздействию. Моос и его школа твердости (тальк равен 1, алмаз — 10) будут и проще, и понятнее для школьников.

Прекрасно, когда на уроках технологии звучат шутливые строки, например, взятые у А. С. Пушкина («Движение»):

Движенья нет — сказал мудрец брадатый.

Другой смолчал и стал пред ним ходить.

Сильнее бы не смог он возразить.

Хвалили все ответ замысловатый!

Между прочим, это реальный факт из спора греческого философа Зенона Элейского (учившего, что все в мире неподвижно и только вследствие обмана чувств нам кажется, что тело движется) и Диогена. Согласитесь, пример эрудиции учителя технологии, оперирующего знаниями из разных областей, может подвигнуть его питомцев на расширение собственного интеллекта. Значение межпредметных связей заключается еще и в том, что они наглядно демонстрируют востребованность и нужность знаний других дисциплин школьного курса.

Приведем еще один пример. Штангенциркуль — один из самых распространенных инструментов в мастерских. Используя математические расчеты и знания по физике, можно измерить с помощью штангенциркуля массу детали или заготовки (см. рис. 25).





Дата публикования: 2014-10-19; Прочитано: 460 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...