Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Выпрямительные и термоэлектрические вольтметры



Термоэлектрические вольтметры

Термоэлектрические вольтметры представляют собой сочетание магнитоэлектрического измерительного механизма с одной или несколькими термопарами. Термопреобразователь включает в себя нагреватель, по которому протекает измеряемый сигнал, и термопару, на концах которой возникает термоЭДС. В цепь термопары включен микроамперметр, измеряющий термоток. Под действием измеряемого тока i(t) в нагревателе выделяется тепловая энергия Q, величина которой пропорциональна квадрату измеряемого тока.

Выделяемое тепло обеспечивает нагревание термопары, приводящее к возникновению термоЭДС и соответственно термотока iT(t), протекающего через микроамперметр iпр(t). Поскольку переменный ток преобразуется в постоянный путем превращения электрической энергии в тепловую, прибор будет откликаться на среднеквадратическое значение измеряемого напряжения и градуироваться также в этих значениях, т.е. С = 1.

= =

Достоинства:

1) С=1 означает, что показания такого прибора не зависят от формы измеряемых напряже-

ний;

2) можно производить градуировку на постоянном токе;

3) широкий диапазон рабочих частот (до 10 МГц).

Недостатки:

1) малый срок службы термопары даже при нормальных условиях эксплуатации;

2) чувствительность термопары к электромагнитным, механическим и другим воздействиям;

3) необходимость применения измерительного механизма повышенной чувствительности.

Чаще всего на основе термоэлектрической системы конструируют высокочастотные амперметры, измеряющие токи в достаточно широком диапазоне частот.

Выпрямительные приборы

Выпрямительные приборы представляют собой сочетание магнитоэлектрического измерительного механизма с одним или несколькими полупроводниковыми преобразователями. Основные операции, выполняемые схемой такого прибора следующие: преобразование измеряемого напряжения с помощью полупроводникового диода, выделение постоянной составляющей и ее измерение с помощью магнитоэлектрического прибора.

В зависимости от схемного решения различают выпрямительные приборы:

а) с однополупериодным выпрямлением;

б) c двухполупериодным выпрямлением.

Магнитоэлектрический прибор реагирует на постоянный (средневыпрямленный) ток, т. е. Выпрямительный прибор будет откликаться на средневыпрямленное значение, а градуироваться в среднеквадратических значениях синусоидального сигнала. Эти величины в соответствии с связаны между собой коэффициентом усреднения, который в данных приборах будет являться оэффициентом градуировки. Это значит, что коэффициент градуировки будет отличаться от 1 (в схеме с однополупериодным выпрямлением с=2,22, с двухполупериодным выпрямлением с=1,11) и показание такого прибора будут содержать методическую погрешность, зависящую от формы измеряемого напряжения.

Основные характеристики выпрямительных приборов:

Достоинства:

1) простота конструкции;

2) высокая чувствительность;

3) широкий диапазон рабочих частот (50…105 Гц)

Недостатки:

1) погрешность, обусловленная зависимостью показаний приборов от температуры;

2) дополнительная погрешность от частоты измеряемого сигнала из-за наличия емкости

обратного перехода полупроводникового диода.

Для уменьшения этих недостатков вводят схемы частотной и температурной компенсации.

21. Обобщённая структурная схема электронных аналоговых вольтметров. Основные типы применяемых детекторов.

Обобщенная структурная схема аналоговых электронных вольтметров содержит максимальное число блоков, некоторые из которых в зависимости от назначения вольтметра могут отсутствовать. В электронных вольтметрах, снабженных усилительными устройствами потребление мощности из измерительной цепи ничтожно мало. К достоинствам электронных вольтметров относятся: широкие пределы измерения и частотный диапазон (от 20 Гц до 1000 МГц), высокая чувствительность, хорошая перегрузочная способность

Входное устройство предназначено для:

а) ослабления сигнала в заданное число раз, позволяющего расширить диапазон в сторону больших измеряемых напряжений;

б) обеспечения входных параметров вольтметра: входного сопротивления в пределах 1 - 10

МОм, входной емкости 1 - 30 пФ.

Усилители переменного тока служат для:

а) повышения чувствительности;

б) расширения динамического диапазона в сторону меньших измеряемых напряжений.

Для выполнения указанных задач усилители переменного тока должны иметь заданный и высокостабильный коэффициент усиления в рабочем диапазоне частот и температур, малые нелинейные искажения, малые собственные шумы и быть нечувствительными к колебаниям напряжения питания, что достигается использованием многокаскадных усилителей, охваченных отрицательной обратной связью.

3. Усилители постоянного тока служат для обеспечения согласования небольшого внутреннего

сопротивления магнитоэлектрического измерительного механизма с большим сопротивлением на-

грузки преобразователя. К усилителям постоянного тока предъявляются жесткие требования в от-

ношении постоянства коэффициента усиления и малого дрейфа нуля, т. е. медленного изменения

выходного сигнала при отсутствии на входе информационного сигнала. Они выполняются в виде

мостовых схем с отрицательной обратной связью.

4. Преобразователи служат для преобразования переменного тока в постоянный, в качестве преобразователей служат детекторы. Детекторы можно классифицировать по функции преобразования входного напряжения в выходное на следующие типы: квадратичные, линейные, амплитудные (пиковые). Тип детектора во многом определяет свойства прибора: так вольтметры с амплитудными детекторами являются самыми высокочастотными; вольтметры с квадратичными детекторами позволяют измерять напряжения любой формы; вольтметры с линейными детекторами пригодны только для измерения гармонического сигнала, но являются самыми простыми, надежными и дешевыми.

Аналоговые электронные вольтметры могут строиться по двум основным схемам: усилитель -

преобразователь и преобразователь - усилитель. Первая из схем обладает большой чувствительно-

стью, но частотный диапазон у таких вольтметров определяется полосой пропускания усилителя

переменного тока и составляет сотни килогерц; вторая схема используется в вольтметрах для из-

мерения напряжения значительного уровня, т.к. обеспечить большое усиление с помощью усилителя постоянного тока сложно, зато частотный диапазон таких усилителей и, соответственно вольтметров, может составлять сотни мегагерц.

Электронные вольтметры могут иметь открытый или закрытый вход по отношению к постоянной составляющей измеряемого напряжения. При закрытом входе схема вольтметра содержит разделительный конденсатор, не пропускающий постоянную составляющую сигнала, при открытом входе такого конденсатора нет и на блоки вольтметра поступает как переменная, так и постоянная составляющая сигнала.

Элементная база, используемая при создании вольтметров переменного напряжения, определяется существующим на момент создания вольтметров уровнем техники (от полупроводников образцов до микроинтегрального исполнения), однако функциональное назначение блоков остается неизменным.

22. Структурные схемы электронных вольтметров: переменного тока. Типы применяемых детекторов.

Вольтметры переменного тока строятся по схеме усилитель-преобразователь. В качестве пре-

образователей могут использоваться квадратичные или линейные детекторы.

Если применяются квадратичные детекторы, то такие вольтметры называются вольтметрами

среднеквадратических значений, их структурная схема приведена на рис

Квадратичный детектор преобразует переменное напряжение в постоянное, пропорциональное,

квадрату среднеквадратического значения измеряемого напряжения. Значит, измерение среднеквадратического напряжения связано с выполнением трех операций: возведение в квадрат мгновенного значения сигнала, усреднение и извлечение корня из результата усреднения (последняя операция обычно осуществляется при градуировки шкалы вольтметра). Возведение в квадрат мгновенного напряжения как правило производят с помощью полупроводникового диода, используя начальный участок вольтамперной характеристики, описываемой квадратичной зависимостью. Однако протяженность квадратичного участка характеристики обычно невелика (не более 100 мВ), одним из методов для расширения этого участка является метод кусочно-линейной аппроксимации. Для этого в схему детектора включают несколько диодных ячеек и подбором напряжения смещения на диодах получают суммарную вольтамперную характеристику, приближающуюся по форме к квадратичной кривой.

Если в вольтметрах переменного тока применяются линейные детекторы, то такие вольтметры называются вольтметрами средневыпрямленных значений, структурная схема таких вольтметров приведена на рис.

В таких вольтметрах в качестве преобразователя используется линейный детектор, преобразующий переменное напряжение в постоянный ток, пропорциональный средневыпрямленному значению измеряемого напряжения. Такие преобразователи выполняются по схемам двухполупериодного выпрямления и используют линейный участок вольт-амперной характеристики полупроводникового диода. Аналоговый вольтметр средневыпрямленных значений по сравнению с выпрямительным вольтметром имеет более высокую чувствительность и меньшее потребление мощности от измерительной цепи. Эти вольтметры откликаются на средневыпрямленное значение, градуируются в среднеквадратических значениях и имеют коэффициент градуировки С=1.





Дата публикования: 2015-02-18; Прочитано: 2692 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...