Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Составить алгоритм поиска экстремума функции двух переменных



F (x1, x2) = x14 +x12 + x1x2 – 2 x22

методом «тяжелого шарика

Метод тяжелого шарика.

Градиентный метод решения задачи безусловной минимизации

f (x) → min, (1)

где f: R mR, можно интерпретировать в терминах обыкновенных дифференциальных уравнений следующим образом. Рассмотрим дифференциальное уравнение

px ·+ f ′(x) = 0 (2)

(здесь точка над x обозначает производную по независимой переменной t, а f ′(x) как обычно обозначает градиент отображения f: R mR; предполагается, что p > 0). Простейший разностный аналог уравнения (2), а именно, явная схема Эйлера

p xn +1xn h + f ′(xn) = 0

и есть градиентный метод для задачи (1):

xn +1 = xn h p f ′(xn).
(3)

Рассмотрим теперь вместо уравнения (2) уравнение

mx ··+ px ·+ f ′(x) = 0,
описывающее движение шарика массы m в потенциальном поле f ′ при наличии силы трения. Потери энергии на трение вынудят шарик спуститься в точку минимума потенциала f, а силы инерции не дадут ему осциллировать так, как это изображено на рис. 8. Это позволяет надеяться, что изменение уравнения (2) введением в него инерционного члена mx ··улучшит сходимость градиентного метода (3). Конечно-разностный аналог уравнения, описыавющего движение шарика — это, например, уравнение
m xn +1 – 2 xn + xn –1 h 2 + p xnxn –1 h + f ′(xn) = 0.

После простых преобразований и очевидных обозначений мы получаем

xn +1 = xn – α f ′(xn) + β(xnxn –1). (4)

Итерационная формула (4) задает метод тяжелого шарика решения задачи безусловной оптимизации (см. рис. 14; ср. с рис. 8).


Рис. 14.

Можно доказать, что в условиях теоремы 3.7 метод тяжелого шарика при α = 2/(√Λ + √λ)2 и β = (√Λ – √λ)/(√Λ +√λ)2 сходится со скоростью геометрической прогрессии со знаменателем q = (√Λ –√λ)/(√Λ + √λ).

Если теперь сравнить знаменатели q гм = (Λ – λ)/(Λ + λ) и q мтш = (√Λ – √λ)/(√Λ + √λ), характеризующие скорости сходимости градиентного метода и метода тяжелого шарика, соответственно, то для плохо обусловленных функций, т. е. для функций с μ = Λ /λ >> 1, очевидно, q гм ≈ 1– 2/μ, а q мтш ≈ 1 – 2/√μ. Поэтому для уменьшения погрешности в e ≈ 2.718 раз градиентный метод с постоянным оптимальным шагом требует –[ln(1 – 2/μ)]–1 ≈ μ)/2 итераций, а метод тяжелого шарика –ln(1 – 2/√μ)]–1 ≈ √μ/2. Для больших μ это весьма значительный выигрыш, поскольку объем вычислений в методе тяжелого шарика почти не отличается от объема вычислений в градиентном методе.





Дата публикования: 2015-02-18; Прочитано: 589 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...