Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Морфо-функциональная характеристика и классификация нервной ткани. Источники развития. Нейроциты: функции, строение, морфо-функциональная классификация



Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражении, возбуждения, выработки импульса и передачи его. Она является основой строения органон нервной системы, обеспечивающих регуляцию всех гканей и органов, их интеграцию в организме и связь с окружающей. Нервные клетки — основные структурные компоненты нервной ткани, выполняющие специфическую функцию. Нейроглия обеспечивает существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции. Развитие нервной ткани Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок. Передний конец нервной пластинки расширяется, образуя позднее головной мозг. Латеральные края продолжают подниматься и растут медиально, пока не встретятся и не сольются по средней линии в нервную трубку, которая отделяется от лежащей над ней эпидермальной эктодермы. Часть клеток нервной пластинки не входит в состав нервной трубки и эпидермальной эктодермы и образует скопления по бокам от нервной трубки, которые сливаются в рыхлый тяж, располагающийся между нервной трубкой и эпидермальной эктодермой, — нервный гребень (ганглиозная пластинка). Из нервной трубки в дальнейшем формируются нейроны и макроглия центральной нервной системы. Нервный гребень дает начало нейронам чувствительных (сенсорных) и автономных ганглиев, клеткам мягкой мозговой и паутинной оболочек мозга и некоторым видам глии. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны: 1) Вентрикулярная (эпендимная) зона состоит из делящихся клеток цилиндрической формы. Венрикулярные (или матричные) клетки являются предшественниками нейронов и клеток макроглии. Микроглия развивается из другого источника. 2) Субвентрикулярная зона состоит из клеток, утративших способность к перемещению ядер, но сохраняющих высокую пролиферативную активность. Субвентрикулярная зона существует в области спинного мозга в течение нескольких дней, но в тех областях головного мозга, где гистогенез совершается особенно интенсивно, формируются субвентрикулярные и экстравентрикулярные герминативные (камбиальные) зоны, существующие длительное время. 3) Промежуточная (плащевая, мантийная) зона состоит из клеток, переместившихся из вентрикулярной и субвентрикулярной зон — нейробластов и глиобластов. Нейробласты утрачивают способность к делению и в дальнейшем дифференцируются в нейроны. Глиобласты продолжают делиться и дают начало астроцитам и олигодендроцитам. 4) Маргинальная зона (краевая вуаль) формируется из врастающих в нее аксонов нейробластов и макроглии и дает начало белому веществу. В некоторых областях головного мозга клетки плащевого слоя мигрируют дальше, образуя кортикальные пластинки — скопления клеток, из которых формируется кора большого мозга и мозжечка. Тело нейробласта постепенно приобретает грушевидную форму, а от его заостренного конца начинает развиваться отросток — аксон (нейрит). Позднее дифференцируются другие отростки — дендриты. Нейробласты превращаются в зрелые нервные клетки — нейроны. Между нейронами устанавливаются контакты (синапсы). Нейроны, или нейроциты — специализированные клетки нервной системы, ответственные за рецепцию, обработку (процессинг) стимулов, проведение импульса и влияние на другие нейроны, мышечные или секреторные клетки. Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги — звенья цепи, из которой построена нервная система. В зависимости от функции в рефлекторной дуге различают рецепторные (чувствительные, афферентные), ассоциативные и эфферентные (эффекторные) нейроны. Афферентные нейроны воспринимают импульс, эфферентные передают его на ткани рабочих органов, побуждая их к действию, а ассоциативные осуществляют связь между нейронами. Нейроны отличаются большим разнообразием форм и размеров. Диаметр тел клеток-зерен коры мозжечка 4—6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга — 130—150 мкм. Обычно нейроны состоят из тела (перикариона) и отростков: аксона и различного числа ветвящихся дендритов. По количеству отростков различают униполярные нейроны, имеющие только аксон (у высших животных и человека обычно не встречаются), биполярные, имеющие аксон и один дендрит, и мультиполярные, имеющие аксон и много дендритов. Иногда среди биполярных нейронов встречается псевдоуниполярный, от тела которого отходит один общий вырост — отросток, разделяющийся затем на дендрит и аксон. Псевдоуниполярные нейроны присутствуют в спинальных ганглиях, биполярные — в органах чувств. Большинство нейронов мультиполярные. Их формы чрезвычайно разнообразны. Аксон и его коллатерали оканчиваются, разветвляясь на несколько веточек, называемых телодендронами, последние заканчиваются терминальными утолщениями. Трехмерная область, в которой ветвятся дендриты одного нейрона, называется дендритным полем. В нейроне различают часть, специализированную на рецепции стимулов, дендриты и тело — перикарион, трофическую часть (тело нейрона) и проводящую, передающую импульс (аксон). Дендриты представляют собой истинные выпячивания тела клетки. Они содержат те же органеллы, что и тело клетки. Аксон — отросток, по которому импульс передается от тела клетки. Он содержит митохондрии, нейротубулы и нейофиламенты, а также агранулярный эндоплазматический (но не гранулярный) ретикулум. Ядро нейрона. Подавляющее большинство нейронов человека содержит одно ядро, расположенное чаще в центре, реже — эксцентрично. Двуядерные и тем более многоядерные нейроны встречаются крайне редко. Форма ядер нейронов округлая. В соответствии с высокой активностью метаболизма кейроиитов хроматин в их ядрах диспергирован. В ядре имеется 1, а иногда 2—3 крупных ядрышка. Плазмолемма нейрона обладает способностью генерировать и проводить импульс. Ее интегральными белками являются белки, функционирующие как ионно-избирательные каналы, и рецепторные белки, вызывающие реакции нейронов на специфические стимулы. Ионные каналы могут быть открыты, закрыты или инактивированы. При окрашивании нервной ткани анилиновыми красителями (тионин, толуидиновый синий, крезиловый фиолетовый и др.) в цитоплазме нейронов выявляется в виде базофильных глыбок и зерен различных размеров и форм хроматофильная субстанция. Электронная микроскопия показала, что каждая глыбка хроматофильной субстанции состоит из цистерн гранулярной эндоплазматической сети, свободных рибосом и полисом. Гранулярная эндоплазматическая сеть синтезирует нейросекреторные белки, интегральные белки плазмолеммы и белки лизосом. Свободные рибосомы и полисомы синтезируют белки цитозоля (гиалоплазмы) и неинтегральные белки плазмолеммы нейронов. Аппарат Гольджи в нейронах хорошо развит.Пузырьки аппарата Гольджи транспортируют белки, синтезированные в гранулярном эндоплазматическом ретикулуме либо к плазмолемме (интегральные белки), либо в терминал» (нейропептиды, нейросекрет), либо в лизосомы (лизосомальные гидролазы и мембраны лизосом). Митохондрии обеспечивают энергией такие процессы, как транспорт ионов и синтез белков. Лизосомы участвуют в ферментативном расщеплении компонентов клетки рецепторов и мембран, часть из которых может рециркулировать. Из элементов цитоскелета в цитоплазме нейронов присутствуют нейрофиламенты диаметром 12 нм и нейротубулы диаметром 24— 27 нм. Пучки нейрофиламентов представлены в виде нитей — нейрофибрилл. Нейрофибриллы образуют сеть в теле нейрона, а в отростках расположены параллельно. Нейротубулы и нейрофиламенты участвуют в поддержании формы клеток, росте отростков и аксональном транспорте. Аксональный транспорт (аксоплазматический транспорт) — это перемещение веществ от тела в отростки и от отростков в тело нейрона. Он направляется нейротубулами, в транспорте участвуют белки — кинезин и динеин. Транспорт веществ ортела клетки в отростки называется антероградным, к телу — ретроградным. Нейротубулы — органеллы, ответственные за быстрый транспорт, который называется также нейротубулозависимым. Когда нейротубулы разрушены, быстрый транспорт прекращается. Каждая нейротубула содержит несколько путей, вдоль которых движутся различные частички. Аксональный транспорт есть выражение единства нейронов. Благодаря ему поддерживается постоянная связь между телом клетки (трофическим центром) и отростками. С его помощью тело клетки информировано о метаболических потребностях и условиях дистальных частей. Секреторные нейроны Способность синтезировать и секретировать биологически активные вещества, в частности медиаторы (ацетилхолин, норадреналин, серотонин и др.), свойственна всем нейроцитам. Однако существуют нейроциты, специализированные преимущественно для выполнения этой функции, — секреторные нейроны, например клетки нейросекреторных ядер гипоталамической области головного мозга. Секреторные нейроны имеют ряд специфических морфологических признаков. Это крупные нейроны. Хроматофильная субстанция преимущественно располагается по периферии тела клеток. В цитоплазме нейронов и в аксонах находятся различной величины гранулы секрета — нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды. Гранулы нейросекрета выводятся в кровь или мозговую жидкость. Многие секреторные нейроны имеют ядра неправильной формы, что свидетельствует об их высокой функциональной активности. Нейросекреты выполняют роль нейрорегуляторов, участвуя во взаимодействии нервной и гуморальной систем интефации.

Морфо-функциональная характеристика и классификация нервной ткани. Источники развития. Нервные волокна: определение, строение и функциональные особенности миелиновых и безмиелиновых нервных волокон. Регенерация нервных волокон.

Нервная ткань — это система взаимосвязанных нервных клеток и нейроглии, обеспечивающих специфические функции восприятия раздражении, возбуждения, выработки импульса и передачи его. Она является основой строения органон нервной системы, обеспечивающих регуляцию всех гканей и органов, их интеграцию в организме и связь с окружающей. Нервные клетки — основные структурные компоненты нервной ткани, выполняющие специфическую функцию. Нейроглия обеспечивает существование и функционирование нервных клеток, осуществляя опорную, трофическую, разграничительную, секреторную и защитную функции. Нервные волокна Отростки нервных клеток, покрытые оболочками, называются нервными волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном, так как чаще всего (за исключением чувствительных нервов) в составе нервных волокон находятся именно аксоны. В центральной нервной системе оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в периферической — нейролеммоциты. Безмиелиновые нервные волокна находятся преимущественно в составе вегетативной нервной системы. Нейролеммоциты оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. В нервных волокнах внутренних органов, как правило, в таком тяже имеется не один, а несколько (10—20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что оболочки неиролеммоцитов охватывают осевые цилиндры и образуют глубокие складки. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану — мезаксон, на которой как бы подвешен осевой цилиндр. Миелиновые нервные волокна встречаются как в центральной, так и в периферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Диаметр поперечного сечения их колеблется от 2 до 20 мкм. Они также состоят из осевого цилиндра, «одетого» оболочкой из нейролеммоцитов (шванновских клеток), но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, — миелиновый слой и наружный, тонкий, состоящий из цитоплазмы, ядер нейролеммоцитов и нейролеммы. Миелиновый слой содержит значительное количество липидов, поэтому при обработке осмиевой кислотой он окрашивается в темно-коричневый цвет. В миелиновом слое периодически встречаются узкие светлые линии — насечки миелина, или насечки Шмидта — Лантермана. Через определенные интервалы (1—2 мм) видны участки волокна, лишенные миелинового слоя, — узловатые перехваты, или перехваты Ранвье. В процессе развития аксон погружается в желобок на поверхности нейролеммоцита. Края желобка смыкаются. При этом образуется двойная складка плазмолеммы нейролеммоцита — мезаксон. Мезаксон удлиняется, концентрически наслаивается на осевой цилиндр и образует вокруг него плотную слоистую зону — миелиновый слой. На электронных микрофотографиях видны главные плотные и интрапериодальные линии. Первые образуются от слияния цитоплазматических поверхностей плазмолеммы нейролеммоцита (или олигодендроглиоцита в центральной нервной системе), вторые — от контакта экстрацеллюлярных поверхностей соседних слоев плазмолеммы нейролеммоцита. Отсутствие миелинового слоя в области узловых перехватов объясняется тем, что в этом участке волокна кончается один нейролеммоцит и начинается другой. Осевой цилиндр в этом месте частично прикрыт интердигитирующими отростками нейролеммоцитов. Аксолемма (оболочка аксона) обладает в области перехвата значительной электронной плотностью. Насечка миелина представляет собой участок миелинового слоя, где завитки мезаксона лежат неплотно друг к другу, образуя спиральный туннель, идущий снаружи внутрь и заполненный цитоплазмой нейролеммоцита, т.е. место расслоения миелина. Снаружи от нейролеммоцита располагается базальная мембрана. Миелиновые волокна центральной нервной системы отличаются тем, что в них миелиновый слой формирует один из отростков олигодендроглиоцита. Миелиновые волокна центральной нервной системы не имеют насечек миелина, а нервные волокна не окружены базальными мембранами. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1—2 м/с, тогда как толстые миелиновые — со скоростью 5—120 м/с. Для миелиновых волокон характерно сальтаторное проведение возбуждения, т.е. прыжками. Между перехватами идет электрический ток, скорость которого выше, чем прохождение волны деполяризации по аксолемме. Регенерация зависит от места травмы. Как в центральной, так и в периферической нервной системе погибшие нейроны не восстанавливаются. Полноценной регенерации нервных волокон в центральной нервной системе обычно не происходит, но нервные волокна в составе периферических нервов обычно хорошо регенерируют. При этом нейролеммоциты периферического отрезка и ближайшего к области травмы участка центрального отрезка пролиферируют и выстраиваются компактными тяжами. Осевые цилиндры центрального отрезка дают многочисленные коллатерали, которые растут со скоростью 1—3 мм в сутки вдоль нейролеммальных тяжей, создавая, таким образом, избыточный рост нервных волокон. Выживают только те волокна, которые достигают соответствующих окончаний. Остальные дегенерируют. Поврежденные нервные волокна головного и спинного мозга не регенерируют, исключение составляют аксоны нейросекреторных нейронов гипоталамуса.




Дата публикования: 2015-02-18; Прочитано: 1565 | Нарушение авторского права страницы



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...