Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Свойства дисперсии



Свойства математического ожидания.

1) Математическое ожидание постоянной равно самой постоянной: М (С) = С

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М (С) = С ·1 = С.

2) Постоянный множитель можно выносит за знак математического ожидания: М (СХ) = С М (Х).

Доказательство. Если случайная величина Х задана рядом распределения то ряд распределения для СХ имеет вид: Тогда М (СХ) = Сх 1 р 1 + Сх 2 р 2 + … + Схпрп = С (х 1 р 1 + х 2 р 2 + … + хпрп) = СМ (Х).

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий: M (XY) = M (X) M (Y).

4)Математическое ожидание суммы двух случайных величин (зависимых или незави-симых) равно сумме математических ожиданий слагаемых M (X + Y) = M (X) + M (Y).

Свойства дисперсии.

1) Дисперсия постоянной величины С равна нулю: D (C) = 0

Доказательство. D (C) = M ((C – M (C))²) = M ((C – C)²) = M (0) = 0.

2) Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат: D (CX) = C ² D (X)

Доказательство. D (CX) = M ((CX – M (CX))²) = M ((CX – CM (X))²) = M (C ²(X – M (X))²) = C ² D (X).

3) Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:

D (X + Y) = D (X) + D (Y)Доказательство. D (X + Y) = M (X ² + 2 XY + Y ²) – (M (X) + M (Y))² = M (X ²) + 2 M (X) M (Y)+ M (Y ²) – M ²(X) – 2 M (X) M (Y) – M ²(Y) = (M (X ²) – M ²(X)) + (M (Y ²) – M ²(Y)) = D (X) + D (Y).

Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий. Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.

4) Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D (X – Y) = D (X) + D (Y). Доказательство. D (X – Y) = D (X) + D (- Y) = D (X) + (-1)² D (Y) = D (X) + D (X).

10. Биномиальное распределение. Биномиальным называют законы распределения случайной величины Х числа появления некоторого события в n опытах если вероятность р появления события в каждом опыте постоянна Сумма вероятностей представляют собой бином Ньютона Для определения числовых характеристик в биномиальное распределение подставить вероятность которая определяется по формуле Бернули. При биномиальном распределении дисперсия равна мат. Ожиданию умноженному на вероятность появления события в отдельном опыте.   11. Распределение Пуассона Когда требуется спрогнозировать ожидаемую очередь и разумно сбалансировать число и производительность точек обслуживания и время ожидания в очереди. Пуассоновским называют закон распределения дискретной случайной величины Х числа появления некоторого события в n-независимых опытах если вероятность того, что событие появится ровно m раз определяется по формуле. a=np n-число проведенных опытовр-вероятность появления события в каждом опытеВ теории массового обслуживания параметр пуассоновского распределения определяется по формуле а=λt, где λ - интенсивность потока сообщений t-время Необходимо отметить, что пуассоновское распределение является предельным случаем биномиального, когда испытаний стремится к бесконечности, а вероятность появления события в каждом опыте стремится к 0. Пуассоновское распределение является единичным распределением для которого такие характеристики как мат. Ожидание и дисперсия совпадают и они равны параметру этого закона распределения а.   12. Геометрическое рапределение Производится серия испытаний. Случайная величина - количество испытаний до появления первого успеха (например, бросание мяча в корзину до первого попадания). Закон распределения имеет вид: xi 0 1 2 … k … / pi p qp q 2 pqkp … Если количество испытаний не ограничено, т.е. если случайная величинв может принимать значения 1, 2,..., ∞, то математическое ожидание и дисперсию геометрического распределения можно найти по формулам M(X) = 1/p, D(X) = q/p2 Гипергеометрическое рапределение Имеется N объектов. Из них n объектов обладают требуемым свойством. Из общего количества отбирается m объектов. Случайная величина X - число объектов из m отобранных, обладающих требуемым свойством. Для вычисления вероятностей используются биномиальные коэффициенты   13. Непрерывными величины возможные значение которых непрерывно заполняют некоторый диапазон.Законом распределения случайной величины называется всякое соотношение устанавливающее связь между возможными значениями случайных величин и соответствующими им вероятности. Функция распределения случайной величины. Для непрерывных случайных величин применяют такую форму закона распределения, как функция распределения. Функция распределения случайной величины Х, называется функцией аргумента х, что случайная величина Х принимает любое значение меньшее х (Х<х) F(х)=Р(Х<х) F(х) - иногда называют интегральной функцией распределения или интегральным законом распределения. Функция распределения обладает следующими свойствами: 1. 0<F(х)<1 2. если х12,то F(х1)>F(х2) функция может быть изображена в виде графика. Для непрерывной величины это будет кривая изменяющееся в пределах от 0 до 1, а для дискретной величины - ступенчатая фигура со скачками. С помощью функции распределения легко находится вероятность попадания величины на участок от α до β Р(α<х<β) рассмотрим 3 события А - α<Х В - α<Х<β С - Х<β С=А+В Р(С)=Р(А)+Р(В) (α<х<β)=Р(α)-Р(β) Плотность распределения вероятности непрерывной случайной величины.Плотность распределения вероятности непрерывной случайной величины Х называется функция f(х) равная первой производной от функции распределения F(х)График плотности распределения называется кривой распределения. Основные свойства плотности функции распределения: 1. f(х)>0 2. Математическим ожиданием случайной величины х (M[x])называется средне взвешенно значение случайной величины причем в качестве весов выступают вероятности появления тех или иных значений. Дисперсия (D[x]) характеризует рассеивание или разряженность случайной величины около ее математического ожидания. 1 4. Закон распределения непрерывной случайной величины называется равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение (f (x) = const при a ≤ x ≤ b, f (x) = 0 при x < a, x > b. Найдем значение, которое принимает f (x) при Из условия нормировки следует, что откуда . Вероятность попадания равномерно распределенной случайной величины на интервал равна при этом   15. Нормальный закон распределения (закон Гаусса) Нормальным называется распределение случайной величины Х если ф-ция плотности распределения Полученное выражение через элементарные функции не может быть выражено, такая функция так называемый интеграл вероятности для которой составлены таблицы, чаще всего в качестве такой функции используют Часто по условию задачи необходимо определить вероятность попадания случайной величины Х на участок симметричный математическому ожиданию. Правило трех сигм это правило часто используется для подтверждения или отбрасывания гипотезы о нормальном распределении случайной величины.   16. Локальная теорема Лапласа. Вероятность того, что в n независимых испытаниях в каждом из которых вероятность появления события А равно р причем 1>р>0, то это событие наступает ровно m раз приблизительно равна Интегральная теорема Лапласа. Вероятность того, что в n независимых испытаниях в каждом из которых вероятность появления события А равно р, причем 1>р>0, то событие А наступит не менее m1 раз и не более m2 раза приблизительно равно 17. Моменты дискретных распределений Начальным моментом порядка k случайной величины Х называется матема-тическое ожидание величины Xk: ν k = M (Xk). В частности, ν1 = М (Х), ν2 = М (Х 2). Следовательно, дисперсия D (X) = ν2 – ν1². Определение 9.2. Центральным моментом порядка k случайной величины Х называется мате-матическое ожидание величины (Х – М (Х)) k: μ k = M ((Х – М (Х)) k). В частности, μ1 = M (Х – М (Х)) = 0, μ2 = M ((Х – М (Х))2) = D (X). Можно получить соотношения, связывающие начальные и центральные моменты Модой (Мо)случайной величины х называется наиболее вероятное ее значение. Это определение строго относится к дискретным случайным величинам. Для непрерывной величины модой называется такое ее значение для которого ф-ция плотности распределения имеет максимальную величину. Медианой (Ме)случайной величины называется такое ее значение для которого окажется ли случайная величина меньше этого значения. Для непрерывной случайной величины медиана это абсцисса точки в которой площадь под кривой распределяется пополам. Для дискретной случайной величины значение медианы зависит от того четное или нечетное значение случайной величины n=2k+1, то Ме=хк+1 (среднее по порядку значение) Если значение случайных величин четное, т.е n=2k, то
18. Генеральная совокупность– все множество имеющихся объектов.Выборка – набор объектов, случайно отобранных из генеральной совокупности.Объем генеральной совокупности N и объем выборки n – число объектов в рассматривае-мой совокупности. Для того, чтобы по исследованию выборки можно было сделать выводы о поведе-нии интересующего нас признака генеральной совокупности, нужно, чтобы выборка правиль-но представляла пропорции генеральной совокупности, то есть была репрезентативной(представительной). Учитывая закон больших чисел, можно утверждать, что это условие выполняется, если каждый объект выбран случайно, причем для любого объекта вероятность попасть в выборку одинакова наблюдаемые значения случайной величины х 1, х 2,…, хк называют вариантами, Последовательность вариант, записанных в порядке возрастания, называют вариационнымрядом. - мода М0 – варианта, имеющая наибольшую частоту (в предыдущем примере М0 = 5). - медиана те - варианта, которая делит вариационный ряд на две части, равные по числу вариант. Если число вариант нечетно (n = 2 k + 1), то me = xk+ 1, а при четном n = 2 k .   19. Статистическое распредедение выборки Пусть интересующая нас случайная величина Х принимает в выборке значение х 1 п 1 раз, х 2п 2 раз, …, хк – пк раз, причем где п – объем выборки. Тогда наблюдаемые значения случайной величины х 1, х 2,…, хк называют вариантами, а п 1, п 2,…, пк – частотами. Если разделить каждую частоту на объем выборки, то получим относительные частоты Последовательность вариант, записанных в порядке возрастания, называют вариационнымрядом, а перечень вариант и соответствующих им частот или относительных частот – стати-стическим рядом: полигон частот: ломаная, отрезки которой соединяют точки с координатами (x 1, n 1), (x 2, n 2),…, (xk, nk), где xi откладываются на оси абсцисс, а ni – на оси ординат. Если на оси ординат откладывать не абсолютные (ni), а относительные (wi) частоты, то получим полигон относительных частот.   20. Группировка выборочных данных. Гистограмма и кумулята Если исследуется некоторый непрерывный признак, то вариационный ряд может состоять из очень большого количества чисел. В этом случае удобнее использовать группированную выборку. Для ее получения интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько равных частичных интервалов длиной h, а затем находят для каждого частичного интервала ni – сумму частот вариант, попавших в i -й интервал. Составленная по этим результатам таблица называется группированным статистическим рядом:гистограмма, то есть ступенчатая фигура, состоящая из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высотами отрезки длиной ni /h (гистограмма частот) или wi /h (гистограмма относительных частот). В первом случае площадь гистограммы равна объему выборки, во втором – единице  
Номера интервалов     k
Границы интервалов (a, a +h) (a + h, a+ 2 h) (b – h, b)
Сумма частот вариант, попавших в интервал   n 1   n 2   nk

21. Выборочным средним называется среднее арифметическое значений случайной величины, принимаемых в выборке: , где xi – варианты, ni - частоты.

Замечание. Выборочное среднее служит для оценки математического ожидания исследуемой случайной величины. В дальнейшем будет рассмотрен вопрос, насколько точной является такая оценка. Выборочной дисперсией называется , а выборочным средним квадратическим отклонением Так же, как в теории случайных величин, можно доказать, что справедлива следующая формула для вычисления выборочной дисперсии: .





Дата публикования: 2015-03-26; Прочитано: 1240 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...