Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Радиопередающие устройства



В функциональном смысле под радиопередающим устройством понимается комплекс оборудования, предназначенный для формирования и излучения радиочастотного сигнала (радиосигнала). В качестве функциональных узлов в состав радиопередатчика входят генератор несущей и модулятор. Как правило, генератор несущей и модулятор строятся по многокаскадной схеме. Кроме того, в состав радиопередающих устройств (особенно мощных) входит много другого оборудования: источники питания, средства охлаждения, автоматического и дистанционного управления, сигнализации, защиты и блокировки и пр.

Основные показатели радиопередающих устройств условно могут быть разделены на три группы: энергетические, показатели электромагнитной совместимости и качественные.

Важнейшими энергетическими показателями радиопередающего устройства являются номинальная мощность и промышленный коэффициент полезного действия. Под номинальной мощностью радиопередающего устройства P понимают среднее за период радиочастотного колебания значение энергии, подводимой к антенне. Промышленный коэффициент полезного действия КПД представляет собой отношение номинальной мощности P к общей PОБЩ, потребляемой от сети переменного тока радиопередающим устройством .

Основными показателями электромагнитной совместимости являются диапазон рабочих частот, нестабильность частоты колебаний и внеполосные излучения. Диапазоном рабочих частот называют полосу частот, в которой радиопередающее устройство обеспечивает работу в соответствии с требованиями стандарта. Под нестабильностью частоты радиопередатчика понимают отклонение частоты колебаний на его выходе за определенный промежуток времени относительно установленной частоты. Малая нестабильность (высокая стабильность) частоты позволяет ослабить помехи радиоприему. Внеполосными называют такие излучения, которые расположены вне полосы, отведенной для передачи полезных сообщений. Внеполосные излучения являются источником дополнительных помех радиоприему. В случае подавления внеполосных излучений качество передачи сигнала не ухудшается.

По назначению радиопередающие устройства делятся на связные, радиовещательные и телевизионные. По диапазону рабочих частот радиопередающие устройства подразделяются в соответствии с классификацией видов радиоволн. В зависимости от номинальной мощности радиопередающие устройства делятся на маломощные (до 100 Вт), средней мощности (от 100 до 10 000 Вт), мощные (от 10 до 500 кВт) и сверхмощные (свыше 500 кВт).

Специфика эксплуатации позволяет выделить стационарные и подвижные радиопередающие устройства (автомобильные, самолетные, носимые и т.д.).

Первые радиопередатчики работали в телеграфном режиме, т.е. сообщения передавались точками и тире кода Морзе. Для таких систем было не важно качество сигнала, а было важно его наличие. Довольно просто отличить точку от тире при любом качестве передачи. Все начало усложнятся с появлением голосовой связи. Допустим, мы построили генератор высокочастотных колебаний. Что же дальше? Как заставить электромагнитные волны «нести» полезную информацию, в частности наш голос? Еще в 1900 американский инженер Реджинальд Фессенден предложил использовать для этих целей модуляцию.

Полезный звуковой сигнал, например голос, представляет собой акустические колебания или звуковые волны. Очевидно, что эти колебания должны быть преобразованы в электрический вид. Мы не будем подробно останавливаться на этом процессе, так как он должен быть всем хорошо известен из школьного курса физики. Для тех, кто забыл, напомним, что преобразование обычно осуществляется с помощью микрофона.

Допустим, мы имеем электрический сигнал звуковой частоты и имеем высокочастотную электромагнитную волну – несущую. То есть у нас есть информация и несущая для ее транспортировки. Как же «нагрузить» электромагнитную волну звуком? Для этого и применяется модуляция.

Модуляция это процесс объединения информационного, в нашем случае звукового сигнала, с частотой генератора. Модуляция определенным образом изменяет форму ВЧ колебаний и бывает нескольких видов. В радиосвязи чаще всего используют амплитудную (АМ) и частотную модуляцию (ЧМ).

Принцип модуляции.

Как видите все очень просто. Модулирующий сигнал изменяет либо амплитуду несущей, либо ее частоту. И в том, и в другом случае несущая нагружается полезным сигналом.

Мы заставили электромагнитную волну нести наш голос и в результате получили радиопередатчик.

Упрощенная структурная схема радиопередатчика.

Конечно на практике все намного сложней, ведь еще необходимо усилить сигнал, отфильтровать шумы и помехи, обеспечить возможность перестройки на разные частоты и т.д. А сколько различных сервисных функций в обычной портативной радиостанции или в сотовом телефоне? Это и вызовы конкретных абонентов, и контроль канала или частоты, и индикация режимов работы и т.д. и т.п. Но принцип работы от этого не меняется. Кстати, в современных радиопередатчиках основные режимы управления обычно возложены на одну единственную микросхему – микропроцессор, который заведует функционированием устройства и взаимодействием всех блоков.

16.

электромагнитные излучения радиоэлектронного оборудования (РЭО) можно разделить на основные и нежелательные.
Основные радиоизлучения характеризуются:
• несущей частотой;
• мощностью (напряженностью) поля;
• широкой полосой излучаемых частот;
• параметрами модуляции.
Нежелательные излучения подразделяются на побочные, внеполосные и шумовые.
Наиболее опасными, с точки зрения образования каналов утечки информации, являются побочные излучения.
Известно, что побочные электромагнитные излучения и наводки (ПЭМИН) являются наиболее опасным техническим каналом утечки информации средств вычислительной техники (СВТ).
Отмечая многообразие форм электромагнитных излучений, следует подчеркнуть, что имеется и так называемое интермодуляционное излучение, возникающее в результате воздействия на нелинейный элемент высокочастотного (ВЧ) тракта радиоэлектронной системы (РЭС) генерируемых колебаний и внешнего электромагнитного поля.
Цель настоящей работы – исследование методов и средств защиты от побочных излучений и наводок.
Задачи работы:
- определить, что представляют собой побочные излучения и наводки;
- изучить особенности методов и средств защиты от указанных побочных явлений.

1. Понятие и сущность побочных излучений и наводок
Побочные излучения — это радиоизлучения, возникающие в результате любых нелинейных процессов в радиоэлектронном устройстве, кроме процессов модуляции. Побочные излучения возникают как на основной частоте, так и на гармониках, а также в виде их взаимодействия. Радиоизлучение на гармонике — это излучение на частоте (частотах), в целое число раз большей частоты основного излучения. Радиоизлучение на субгармониках — это излучение на частотах, в целое число раз меньших частоты основного излучения. Комбинационное излучение — это излучение, возникающее в результате взаимодействия на линейных элементах радиоэлектронных устройств колебаний несущей (основной) частоты и их гармонических составляющих.
Как известно, любая передача электрического сигнала сопровождается электромагнитным излучением. Если электромагнитный сигнал сам не используется как носитель информации (радиоволны), то подобное излучение оказывается крайне нежелательным с точки зрения безопасности. «В русскоязычной специализированной литературе используется определение «Побочные электромагнитные излучения и наводки» (ПЭМИН). За рубежом пользуются аббревиатурой TEMPEST (сокращение от Transient Electromagnetic Pulse Emanation Standard) или понятием «компрометирующие излучения» (compromising emanations)». Во всех случаях речь идет исключительно о таком явлении, как переходные электромагнитные импульсные излучения работающей радиоэлектронной аппаратуры.
По правде говоря, для пытливого исследователя изучение проблемы побочных излучений может превратиться в потрясающий детектив. Одна история чего стоит! На саму проблему ПЭМИН впервые обратили внимание еще в 20-х годах прошлого века, в ходе разработки армейских средств телефонной и радиосвязи. Полномасштабные (но закрытые) исследования побочных «компрометирующих» электромагнитных излучений начались только в конце 40-х - начале 50-х годов. Причем это тот самый случай, когда практические изыскания даже опережали теоретическую часть проблемы. Вот только несколько наиболее известных исторических примеров.
С конца 80-х годов охотники за чужими секретами часто перехватывают изображение прямиком с компьютерных мониторов при помощи весьма незамысловатого устройства - обычного бытового телевизора, в котором синхронизаторы заменены генераторами, перестраиваемыми вручную.
Осознание опасности побочных электромагнитных излучений привело к тому, что в наши дни правительственные службы используют дорогое металлическое экранирование отдельных устройств, помещений, а иногда и отдельных зданий. Однако даже для внутренних экранированных помещений существует принцип разделения оборудования на так называемое «красное» и «черное». «Красное» оборудование, используемое для обработки конфиденциальной информации (например, мониторы), должно быть изолировано фильтрами и экранами от «черного» (например, радиомодемов), которое передает данные без грифа «секретно».
«Оценочно, по каналу ПЭМИН (побочных электромагнитных излучений и наводок) может быть перехвачено не более 1-2 процентов данных, хранимых и обрабатываемых на персональных компьютерах и других технических средствах передачи информации (ТСПИ)». На первый взгляд может показаться, что этот канал действительно менее опасен, чем, например, акустический, по которому может произойти утечка до 100% речевой информации, циркулирующей в помещении. Однако, нельзя забывать, что в настоящее время практически вся информация, содержащая государственную тайну или коммерческие, технологические секреты, проходит этап обработки на персональных компьютерах. Специфика канала ПЭМИН такова, что те самые два процента информации, уязвимые для технических средств перехвата - это данные, вводимые с клавиатуры компьютера или отображаемые на дисплее, то есть, парадоксально, но весьма значительная часть сведений, подлежащих защите, может оказаться доступна для чужих глаз.
Традиционно считается, что перехват ПЭМИН и выделение полезной информации - весьма трудоемкая и дорогостоящая задача, требующая применения сложной специальной техники. Методики контроля эффективности защиты объектов информатизации созданы в расчете на использование противником так называемых оптимальных приемников. Во времена, когда эти документы разрабатывались, приемные устройства, приближающиеся по своим характеристикам к оптимальным, были громоздкими, весили несколько тонн, охлаждались жидким азотом... Ясно, что позволить себе подобные средства могли лишь технические разведки высокоразвитых государств. Они же и рассматривались в качестве главного (и едва ли не единственного) противника.

Помехи в радиоканале создаются как за счет искажений сигнала при его распространении, так и в результате воздействия внешних источников. В настоящее время можно выделить несколько основных способов борьбы с помехами:

· увеличение энергетического потенциала радиолинии (мощности передатчика, коэффициента усиления антенны);

· снижение уровня собственных шумов приемника;

· снижение уровня внешних помех на входе приемника за счет их компенсации;

· применение совместной обработки помехи и сигнала, основанной на определении различий между полезным сигналом и помехой;

· повышение отношения сигнал/помеха за счет использования помехозащитных методов модуляции и кодирования.

Развитие технических решений, обеспечивающих защиту от помех, идет в направлении комплексного применения указанных выше и других методов, однако реализация таких решений требует определенного усложнения аппаратуры, а значит – увеличения ее стоимости. Поэтому на практике не стремятся создавать устройства с предельно достижимой (потенциальной) помехоустойчивостью. Чаще всего конечный продукт представляет собой компромиссный вариант, оптимизированный по критерию «стоимость – эффективность». Сопоставление реальной и потенциальной помехоустойчивости позволяет судить об эффективности того или иного метода доступа, а также целесообразности его дальнейшего совершенствования.

Основным показателем качества передачи информации в условиях помех, по которому сравнивают различные методы цифровой модуляции и кодирования информации, является безразмерная величина – отношение сигнал/шум, определяемое как h2=Eb/Nо (где Eb – энергия на один бит информации, а No – спектральная плотность мощности шума).

Решающую роль в борьбе с помехами играет выбор структуры сигналов (они должны обладать хорошими взаимокорреляционными свойствами) и оптимального способа приема. Поэтому при планировании структуры сигналов стремятся к тому, чтобы они как можно больше отличались друг от друга, – тогда действующая в системе помеха будет в наименьшей степени влиять на полезный сигнал. Приемник же должен максимально очистить сигнал от искажений, вызванных воздействием помех. Очевидно, что используются различные способы реализации указанных требований, поэтому существующие системы по-разному реагируют на отдельные виды помех.

Методы борьбы с помехами, основанные на структурных различиях сигнала и помехи
Селекция Характерные различия сигнала и помехи Методы подавления помех
Частотная Спектры смещены по частоте Фильтрация
Пространственная Разные направления приема Использование адаптивных антенн
По поляризации Разная поляризация (горизонтальная или вертикальная) Применение поляризационного фильтра
Фазовая Разные фазо-частотные характеристики Использование систем с фазовой автоподстройкой частоты
Временная Разные моменты появления сигнала и помехи Блокирование приемника на время действия мощных импульсных помех, ограничение входного сигнала по уровню (после полосового фильтра)

17.





Дата публикования: 2015-01-26; Прочитано: 2137 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.051 с)...