Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Утверждение



Пусть задан функционал

с подынтегральной функцией , обладающей непрерывными первыми частными производными и называемой функцией Лагранжа или лагранжианом, где через f' обозначена первая производная f по x. Если этот функционал достигает экстремума на некоторой функции , то для неё должно выполняться обыкновенное дифференциальное уравнение

которое называется уравнением Эйлера — Лагранжа.





Дата публикования: 2015-01-26; Прочитано: 537 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2026 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (1.19 с)...