Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Требования к механическим, физическим и химическим свойствам режущих материалов



1) Инструментальный материал должен иметь высокую твердость - не менее 63... 66 НRС по Роквеллу (шкала С).

2) При резании металлов выделяется значительное количество теплоты и режущая часть инструмента нагревается. Температура рабочих поверхностей и режущих кромок инструмента может достигать нескольких сот градусов. Необходимо, чтобы при значительных температурах резания твердость поверхностей инструментов существенно не уменьшалась. Инструментальный материал должен обладать высокой теплостойкостью.

3) Наряду с теплостойкостью, инструментальный материал должен иметь высокую износостойкость при повышенной температуре, т. е. обладать хорошей сопротивляемостью истиранию обрабатываемым материалом.

4) Важным требованием является высокая прочность инструментального материала. Если высокая твердость материала рабочей части инструмента сопровождается значительной хрупкостью, это приводит к поломке инструмента и выкрашиванию режущих кромок.

5) Инструментальный материал должен обладать технологическими свойствами, обеспечивающими оптимальные условия изготовления из него инструментов.

Инструментальная сталь по сравнению с конструкционными углеродистыми сталями обладает значительно большей твердостью (особенно после закалки), но является более хрупкой. По химическому составу инструментальные стали подразделяются на инструментальные углеродистые (ГОСТ 1435- 54), легированные инструментальные (ГОСТ 5952-51) и быстрорежущие (ГОСТ 5952-51).

Инструментальные углеродистые стали по содержанию углерода и твердости подразделяются на низкоуглеродистые, содержащие углерод до 0,25%; среднеуглеродистые - от 0,25% до 0,6% и высокоуглеродистые - от 0,6 до 2%.

Углеродистые инструментальные стали в соответствии с ГОСТ 1435-54 обозначаются следующими марками: У7; У8; У8Г; У9; У10; У11; У12; У13. Буква У указывает, что сталь углеродистая, а следующая за ней цифра - среднее содержание углерода в десятых долях процента. Буква Г в марке показывает повышенное содержание марганца.

Углеродистые инструментальные стали бывают к ачественные и высококачественные.

· Инструментальные качественные углеродистые стали предназначены для изготовления режущего, мерительного и штамповочного инструмента небольших размеров. Марки этих сталей обозначаются буквой У и цифрой, показывающей содержание углерода в десятых долях процента (У7, У8, У9,...,У13).

· Высококачественные стали имеют низкое содержание серы (до 0,02 %) и фосфора (до 0,03%), меньше неметаллических включений, обладают повышенными механическими свойствам. В обозначениях марок высококачественных сталей в отличие от качественных ставится буква А (например, У7А, У8Аит. д.).

Легированная сталь — сталь, в которую в процессе легирования в определенных количествах вводят специальные элементы, обеспечивающие требуемые свойства. Такие элементы называют легирующими. Они могут повышать прочность и коррозионную стойкость стали и снижать опасность ее хрупкого разрушения. Эта сталь идет для изготовления различного инструмента: ударно-штампового, измерительного, режущего. Она имеет ряд преимуществ перед инструментальной углеродистой сталью. Штампы из углеродистой стали обладают высокой твердостью и прочностью, но плохо сопротивляются удару. Метчики, развертки и другие длинные и тонкие инструменты из углеродистой стали при закалке получаются хрупкими, они ненадежны в работе и часто ломаются.

Для легирования стали используются следующие химические элементы: марганец (Mn) — Г; кремний (Si) — С; хром (Cr) — Х; никель (Ni) — Н; медь (Cu) — Д; азот (N) — А; ванадий (V) — Ф; ниобий (Nb) — Б; вольфрам (W) — В; селен (Se) — Е; кобальт (Co) — К; бериллий (Be) — Л; молибден (Mo) — М; бор (B) — Р; титан (Ti) — Т; алюминий (Al) — Ю.

Классификация легированных сталей

По количеству легирующих элементов:

· высоколегированная — общая масса легирующих элементов более 10%;

· среднелегированная — общая масса легирующих элементов более 2,5-10%;

· низколегированная — общая масса легирующих элементов до 2,5%.

По качеству изготовления:

· обычная;

· высококачественная — А.

Марки инструментальной легированной стали

В низколегированных сталях X, 9ХС, ХВГ, ХВСГ основной легирующий элемент - хром. Сталь X легирована только хромом. Повышенное содержание хрома значительно увеличивает ее прокаливаемость. Сталь X прокаливается в масле полностью в сечении до 25 мм, а сталь У10 - только в сечении до 5 мм. Применяют сталь X для изготовления токарных, строгальных и долбежных резцов. Сталь 9ХС кроме хрома легирована кремнием. По сравнению со сталью X,она имеет большую прокаливаемость - до 35 мм; повышенную теплостойкость - до 250 - 260°С (сталь X до 200-210°С) и лучшие режущие свойства. Из стали 9ХС изготовляют сверла, развертки, фрезы, метчики, плашки.

Сталь ХВГ легирована хромом, вольфрамом и марганцем; имеет прокаливаемость на глубину до 45 мм. Сталь ХВГ используют для производства крупных и длинных протяжек, длинных метчиков, длинных разверток и т. п.

Сталь ХВСГ - сложнолегированная сталь и по сравнению со сталями 9ХС и ХВГ лучше закаливается и прокаливается. При охлаждении в масле она прокаливается полностью в сечении до 80 мм. Она меньше чувствительна к перегреву. Теплостойкость ее такая же, как у стали 9ХС. Сталь ХВСГ применяют для изготовления круглых плашек, разверток, крупных протяжек и другого режущего инструмента.

Обозначение марки стали: первые цифры — массовая доля углерода в десятых долях процента, затем буквы — вещество, используемое в качестве легирующего элемента, цифры, стоящие после букв, — средняя массовая доля соответствующего легирующего элемента в целых единицах процентов. Начальную цифру опускают, если содержание углерода не менее 1%. Буква «А», в середине марки стали — содержание азота, в конце — сталь высококачественная. Например, сталь 5ХНМ — 0,5 С, 1 Cr, 1 N1, до 0,3 Mo.

Быстрорежущая сталь - это высоколегированная сталь, применяемая, главным образом, для изготовления режущего инструмента, работающего на скоростях, в 3-5 раз больших, чем инструмент из углеродистой инструментальной стали. Возможность получения такой скорости резания обусловлена красностойкостью. Инструмент из Быстрорежущей стали размягчается при нагреве выше 550-600°С, в то время как из углеродистой инструментальной стали - при 200 С. Красностойкость стали обеспечивают легирующие элементы - вольфрам (W), хром (Cr), ванадий (V), которые образуют карбиды высокой устойчивости.

В зависимости от назначения их можно разделить на две группы:
1) стали нормальной производительности;
2) стали повышенной производительности.
К сталям первой группы относятся Р18, Р12, Р9, Р6МЗ, Р6М5, Р9М4; к сталям второй группы — Р9К5, Р9КЮ, Р10К5Ф5, Р18К5Ф2, Р9Ф5, Р14Ф4, Р18Ф2.
В обозначении марок буква Р указывает, что сталь относится к группе быстрорежущих. Цифра, следующая за ней, показывает среднее содержание вольфрама в процентах. Среднее содержание ванадия в стали в процентах обозначается цифрой, проставляемой за буквой Ф, кобальта -— цифрой, следующей за буквой К.
Быстрорежущая сталь Р18, содержащая 18% вольфрама, долгое время была наиболее распространенной. Инструменты, изготовленные из этой стали, после термической обработки имеют твердость HRC 62—65, красностойкость 600* С и достаточно высокую прочность. Сталь Р18 сравнительно хорошо шлифуется. Существенным недостатком этой стали является большая карбидная неоднородность, особенно значительная в прутках большого сечения.

Сталь Р9 по красностойкости и режущим свойствам почти не уступает стали Р18.
Недостатком стали Р9 является пониженная шлифуемость, вызываемая сравнительно высоким содержанием ванадия и присутствием в структуре очень твердых карбидов. Вместе с тем сталь Р9, по сравнению со сталью Р18, имеет более равномерное распределение карбидов, несколько большую прочность и пластичность, что облегчает ее деформируемость в горячем состоянии и имеет важное значение для инструментов,получаемых различными методами пластической деформации. Из-за пониженной шлифуемости сталь Р9 применяется в ограниченных пределах.

Быстрорежущие стали повышенной производительности Р9К5, Р9К10, Р10К5Ф5 используются в основном при обработке жаропрочных сплавов, высокопрочных и нержавеющих сталей, других труднообрабатываемых материалов, а также конструкционных сталей с повышенными режимами резания. В настоящее время применяются кобальтовые и ванадиевые быстрорежущие стали. Легирование быстрорежущих сталей кобальтом и ванадием понижает прочность, но повышает красностойкость до 630—670*С. При этом возрастают их режущие свойства, т. е. повышается стойкость инструмента в 1,5—3,0 раза по сравнению со стойкостью инструментов из стали Р18.
Вместе с тем быстрорежущие стали повышенной производительности, содержащие кобальт, имеют повышенную чувствительность к обезуглероживанию. Быстрорежущие стали повышенной производительности шлифуются хуже стали Р18 и требуют более точного соблюдения температур нагрева при термической обработке. В порядке ухудшения шлифуемости рассматриваемые стали располагаются в такой последовательности: Р18Ф2, Р18К5Ф2, Р9К5, Р9К10, Р14Ф4, Р9Ф5, Р10К5Ф5. Ухудшение шлифуемости выражается в повышении износа абразивных кругов и увеличении толщины поверхностного слоя стали, повреждаемого при излишне жестком режиме шлифования.
Твёрдые сплавы получают методами порошковой металлургии в виде пластин. Основными компонентами таких сплавов являются карбиды вольфрама (WC), титана (TiC) и тантала (ТаС), мельчайшие частицы которых соединены сравнительно мягким и менее тугоплавким кобальтом. Карбиды придают сплаву высокую твёрдость и теплостойкость, кобальт - прочность на изгиб. Твердые сплавы имеют высокую твердость - 72...76 HRC и теплостойкость до 850... 1000 °С. Это позволяет работать со скоростями резания в 3 - 4 раза большими, чем инструментами из быстрорежущих сталей.

Вольфрамовые сплавы группы ВК: ВК3, ВК3-М, ВК4, ВК6, ВК6-М, ВК6-ОМ, ВК8 и др.

Инструменты из твердых сплавов группы ВК применяют при обработке деталей из конструкционных сталей в условиях низкой жесткости системы СПИД, при прерывистом резании, при работе с ударами, а также при обработке хрупких материалов типа чугуна, что обусловлено повышенной прочностью этой группы твердых сплавов и невысокими температурами в зоне резания.

Такие сплавы используются также при обработке деталей из высокопрочных, жаропрочных и нержавеющих сталей, титановых сплавов. Это объясняется тем, что наличие в большинстве этих материалов титана вызывает повышенную адгезию со сплавами группы ТК, также содержащими титан. Кроме того, сплавы группы ТК имеют значительно худшую теплопроводность и более низкую прочность, чем сплавы ВК.

Двухкарбидные твердые сплавы содержат карбиды вольфрама, и титана и называются титановольфрамовыми (группа ТВК или ТК). В марках Т5К10, Т14К8, Т15К6, Т30К4 цифры после буквы Т показывают процентное содержание карбида титана TiC, буква К – Co, цифра после буквы К – содержание кобальта, остальное – WC.

Пример расшифровки сплава Т5К10: 5% TiC + 10% Co + 85% WC.

Сплавы этой группы более износостойки и менее прочны, чем сплавы группы ВК. Применяются при обработке углеродистых и легированных конструкционных сталей точением, фрезерованием и т. п. Предельная теплостойкость этих материалов определяется началом интенсивного окисления карбидов, т. е. температурой 1100–1150 °!.

Твердые сплавы представляют собой сплавы карбидов тугоплав-ких металлов с кобальтом, являющимся своеобразной связкой. Твердые сплавы обладают высокой твердостью, износостойкостью и теплостойкостью до 1000 °!.

Промышленностью выпускаются три группы вольфрамовых твердых сплавов (ГОСТ 3882–74): ВК – вольфрамовые, ТК – титановольфрамовые и ТТК – титанотанталовольфрамовые

Трехкарбидные твердые сплавы по сравнению со сплавами группы ТК включают карбиды тантала и называются титанотанталовольфрамовыми (группа ТТК).

В марках ТТ7К12, ТТ8К6, ТТ20К9 цифра перед буквой К показывает суммарное содержание карбидов титана и тантала, после буквы К – содержание Co, остальное – WC. Пример расшифровки сплава ТТ8К6: 8% (TiC + TaC) + 6% Co + + 86% WC.

Сплавы этой группы имеют высокую прочность и применяются при обработке жаропрочных сталей и сплавов, титановых сплавов.





Дата публикования: 2015-01-26; Прочитано: 331 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...