С появлением научной астрономии и экспериментального естествознания в XVII веке новые общие взгляды на окружающий мир стали основываться на результатах точных экспериментов и выводов естествознания, и поэтому стали рассматриваться в качестве естественнонаучной картины мира.
Чем отличается научная картина мира от стихийно-эмпирической картины конкретного субъекта? Картина мира у любого человека слишком индивидуальна, поскольку она основана на собственном опыте, личных впечатлениях и ощущениях. Естествознание, как и наука в целом, стремится найти объективные, не зависящие от индивидуального субъекта закономерности природы. Поэтому в науке приходится абстрагироваться от личных ощущений и представлений и построить такую систему знаний о природе, с которой мог бы согласиться каждый исследователь.
Принципы:
- чтобы эта система отображала наиболее фундаментальные свойства и закономерности природы;
- все такие свойства должны рассматриваться в рамках единой, целостной картины, так как никакой отдельный фундаментальный закон естествознания не составляет еще картины природы;
- естественнонаучная картина мира должна быть такой общей теоретической моделью окружающей природы, которая допускает дополнения, исправления и уточнения в связи с развитием научных представлений о природе;
- такую картину следует постоянно проверять и соотносить как с самой природой, так и с изменением фундаментальных знаний о ней.
Первые научные картины природы возникли в рамках наиболее развитых естественнонаучных дисциплин и, прежде всего, занимавших лидирующее положение в науке своего времени.
- в 17-18вв. такое положение занимала механика. Коперник, Кузанский, Бруно, Ньютон, Лагранж, Лаплас, Кант. Объяснение развития природы и общества законами механической формы движения материи, к-рые рассматриваются как универсальные и распространяются на все виды материального движения.
Возникновение и распространение связано с достижениями классической механики 17-18 вв. (Галилей, Ньютон и др.). Выработаны специфические представления о материи, движении, пространстве и времени, причинности... Механика, несмотря на ограниченность уровнем естествознания 17-18 вв., сыграла положительную роль в развитии науки и философии.
Давали естественнонаучное понимание многим явлениям природы, освободив их от мифологических и религиозно-схоластических толкований.
Абсолютизация законов механики привела к созданию механистической картины мира, согласно к-рой вся вселенная (от атомов до планет) представляет собой замкнутую механическую систему, состоящую из неизменных элементов, движение к-рых определяется законами классической механики. Этому уровню развития науки соответствовал метафизический способ мышления (Метафизика). Несостоятельность... Попытки объяснить с т. зр. механики электромагнитные, химические, биологические и тем более социальные явления неизбежно оказывались безуспешными.
Достижения естествознания 19- 20 вв. разрушили механистическую картину мира
- 19в — электродинамика - в рамках механистической картины сложилась термодинамическая картина мира, основанная на молекулярно- кинетической концепции и вероятностно-статических законах. Окончательное крушение механистической картины мира вызвала теория электромагнитного поля, созданная М. Фарадеем и Дж. К. Максвеллом во второй половине 19 в. Если до Максвелла физическая реальность мыслилась в виде материальных точек, то после него физическая реальность предстала в виде непрерывных полей, не поддающихся механистическому объяснению.
- 20в — квантово-релятивистская начало - теория относительности Эйнштейна. Основные выводы:
- всякое движение может описываться только по отношению к другим телам, которые могут приниматься за системы отсчета, связанные с определенной системой координат;
- пространство и время тесно взаимосвязаны друг с другом ибо только совместно они определяют положение движущегося тела. Именно поэтому время в теории относительности выступает как четвертая координата для описания движения, хотя и отличная от пространственных координат;
- специальная теория относительности показала, что ковариантность, или одинаковость формы, законов механики для всех инерциальных, или галилеевых, систем отсчета сохраняет свою силу и для законов электродинамики, но только для этого вместо преобразований Галилея используются преобразования Лоренца;
- при обобщении принципа относительности и распространении его на электромагнитные процессы постулируется постоянство скорости света, которое никак не учитывается в механике.
Особенности:
- Изучаемые объекты зависят от условий и акта наблюдения.
- Неустранимость субъекта (ученый всегда присутствует в объектах теории)
- Замена созерцательного стиля мышления деятельностным
- Уходит в прошлое научный детерминизм (однозначность причинно-следственных связей), появляется стремление к синтезированию различных видов и уровней знания, методология децентрации и теория поля, в котором всё взаимосвязано.