Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Кинематика и динамика автомобильного колеса. Стабилизация управляемых колес



Энергия вращения, вырабатываемая двигателем, преобразуется в поступательное движение транспортного средства движетелем, в качестве которого в автомобиле выступает система колес с эластичными пневматическими шинами.

На автомобильное колесо, взаимодействующее с опорной поверхностью, действуют силы, которые удерживают автомобиль на дороге, передвигают и останавливают его, заставляют изменить направление движения. В процессе взаимодействия колеса с опорной поверхностью в различных направлениях деформируется как колесо, так и опорная поверхность. В зависимости от соотношения деформации колеса и опорной поверхности возможны следующие условные виды движения колеса:

эластичного (деформируемого) колеса по недеформируемой поверхности;

жесткого (недеформируемого) колеса по деформируемой поверхности;

деформируемого колеса по деформируемой поверхности.

К первому виду движения можно относить случаи, когда деформация опорной поверхности значительно меньше деформации шины, что наиболее характерно для автомобиля как транспортного средства, предназначенного для движения по дорогам с твердым покрытием.

Второй вид движения наиболее часто наблюдается при работе трактора на рыхлых или болотистых почвах, при движении автомобиля по снежной целине или сыпучему песчаному грунту.

В некоторых условиях деформации колеса и опорной поверхности соизмеримы, например, при движении автомобиля с пониженным давлением воздуха в шинах по грунтам с малой несущей способностью (пашня, размокший грунт и др.).

Автомобильное колесо может катиться прямолинейно (при прямолинейном движении автомобиля) или криволинейно (при повороте автомобиля). При этом считается, что все силы и моменты, действующие на колесо, располагаются в вертикальной плоскости

Размер автомобильного колеса в свободном, ненагруженном состоянии характеризуется свободным радиусом rc. Свободный радиус колеса — половина наружного диаметра Dн;

rc =0.5 Dн.

Под наружным диаметром колеса понимается диаметр наибольшего окружного сечения беговой дорожки колеса при отсутствии контакта с дорогой.

При действии на колесо вертикальной нагрузки происходит деформация части шины, соприкасающейся с опорной поверхностью. При этом расстояние от оси колеса до опорной поверхности становится меньше свободного радиуса. Это расстояние, замеренное у неподвижного колеса, называется статическим радиусом rст. Статический радиус при номинальных нагрузках и давлении воздуха в шинах также указывается в их характеристиках. Обычно шины конструируют таким образом, чтобы при номинальных нагрузке и давлении прогиб шины составлял 13... 20 % от высоты профиля. Статический радиус при известных конструктивных параметрах шин можно находить из соотношения:

rст =0,5d+l zH,

где d — посадочный диаметр обода шины;

l z —коэффициент вертикальной деформации, зависящий от типа шин:

для тороидных шин l z =0,85...0,87;

для шин с регулируемым давлением и арочных l z =0,8...0,85;

Н — высота профиля.

При качении нагруженного колеса в силу ряда причин (динамическое действие нагрузки, передаваемый колесом крутящий момент, скорость вращения и др.) расстояние между осью колеса и опорной поверхностью меняется. Это расстояние называют динамическим радиусом rд. При качении колеса по твердой опорной поверхности с малой скоростью статический и динамический радиусы его практически одинаковы. Поэтому при приближенных расчетах динамический радиус часто принимают равным статическому.

Радиус качения колеса можно представить как радиус условного недеформируемого кольца, которое, катясь без скольжения, совершит число оборотов и пройдет путь, одинаковый с реальным колесом. Радиус качения колеса является условной величиной и непосредственно не связан с его размерами. Он определяется как отношение поступательной скорости колеса к угловой скорости его вращения rk = vx /w k.

При качении колеса на него могут действовать крутящий момент и толкающая сила. Если колесо катится под действием только толкающей силы, такое колесо называют ведомым. Радиус качения колеса в ведомом режиме rk0 не равен его свободному радиусу, поскольку при действии на шину вертикальной нагрузки происходит сжатие протектора в тангенциальном направлении по нижней полуокружности шины. Поэтому периметр колеса в нагруженном состоянии оказывается меньше периметра свободного колеса. Этому способствует и то, что точки протектора, находящиеся на различном расстоянии от центральной плоскости колеса, имеют неодинаковые относительные скорости. При номинальном давлении и нагрузке радиус качения колеса в ведомом режиме больше его статического радиуса и меньше радиуса колеса в свободном состоянии.

Перемещение части точек колеса, находящихся в контакте с дорожным покрытием, относительно опорной поверхности, когда в зоне контакта есть точки, неподвижные относительно этой поверхности, называется упругим проскальзыванием колеса. Одновременное же перемещение всех находящихся в контакте точек колеса называется скольжением колеса.

Стабилизацией называют свойство управляемых колес сохранять нейтральное положение, соответствующее прямолинейному движению, и автоматически в него возвращаться.

Управление автомобилем с плохой стабилизацией затруднительно и движение его неустойчиво, автомобиль постоянно отклоняется в стороны, и водитель вынужден поворотами рулевого колеса поддерживать требуемое направление движения. Управляемые колеса возвращаются в нейтральное положение под воздействием стабилизирующего момента, возникающего в результате наклона шкворней поворотных цапф и поперечной эластичности шин.

Если момент Мст стремится вернуть управляемые колеса в нейтральное положение, его считают положительным и называют стабилизирующим. Наибольшее влияние на стабилизирующий момент Mст оказывают поперечная эластичность шины и продольный наклон шкворня. На рулевую трапецию действуют также момент, создаваемый силой водителя, и момент Мр.у., вызываемый трением в рулевом управлении, который всегда противодействует движению колес. При прямолинейном движении автомобиля моменты на правом и левом колесах взаимно уравновешиваются, стабилизирующий момент равен нулю и стабилизация обеспечивается почти исключительно благодаря моменту Мр.у., препятствующему отклонению колес от нейтрального положения. При выходе автомобиля из поворота трение, напротив, ухудшает стабилизацию колес, так как препятствует их возвращению в нейтральное положение под действием стабилизирующего момента. Таким образом, момент Мр.у. должен быть большим при малых значениях угла, соответствующих прямолинейному движению, и уменьшается по мере его увеличения.





Дата публикования: 2015-01-25; Прочитано: 3379 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.007 с)...