Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Операционная система, которая может обеспечить требуемое время выполнения задачи реального времени даже в худших случаях, называется операционной системой жёсткого реального времени.
Операционная система, которая может обеспечить требуемое время выполнения задачи реального времени в среднем, называется операционной системой мягкого реального времени.
Системы жёсткого реального времени не допускают задержек реакции системы, так как это может привести к:
- потере актуальности результатов;
- большим финансовым потерям;
- авариям и катастрофам.
Если не выполняется обработка критических ситуаций либо она происходит недостаточно быстро, система жёсткого реального времени прерывает операцию и блокирует её, чтобы не пострадала надёжность и готовность остальной части системы. Примерами систем жёсткого реального времени могут быть — бортовые системы управления (на самолёте, космическом аппарате, корабле, и пр.), системы аварийной защиты, регистраторы аварийных событий.
Системы мягкого реального времени характеризуются возможностью задержки реакции, что может привести к увеличению стоимости результатов и снижению производительности системы в целом. Примером может служить работа компьютерной сети. Если система не успела обработать очередной принятый пакет, это приведет к остановке на передающей стороне и повторной посылке (в зависимости от протокола). Данные при этом не теряются, но производительность сети снижается.
Основное отличие систем жёсткого и мягкого реального времени можно охарактеризовать так: система жёсткого реального времени никогда не опоздает с реакцией на событие, система мягкого реального времени — не должна опаздывать с реакцией на событие.
Обозначим операционной системой реального времени такую систему, которая может быть использована для построения систем жёсткого реального времени. Это определение выражает отношение к ОСРВ как к объекту, содержащему необходимые инструменты, но также означает, что эти инструменты ещё необходимо правильно использовать.
Большинство программного обеспечения ориентировано на «мягкое» реальное время. Для подобных систем характерно:
· гарантированное время реакции на внешние события (прерывания от оборудования);
· жёсткая подсистема планирования процессов (высокоприоритетные задачи не должны вытесняться низкоприоритетными, за некоторыми исключениями);
· повышенные требования к времени реакции на внешние события или реактивности (задержка вызова обработчика прерывания не более десятков микросекунд, задержка при переключении задач не более сотен микросекунд)
Классическим примером задачи, где требуется ОСРВ, является управление роботом, берущим деталь с ленты конвейера. Деталь движется, и робот имеет лишь маленький промежуток времени, когда он может её взять. Если он опоздает, то деталь уже не будет на нужном участке конвейера, и следовательно, работа не будет выполнена, несмотря на то, что робот находится в правильном месте. Если он подготовится раньше, то деталь ещё не успеет подъехать, и он заблокирует ей путь.
В своем развитии ОСРВ строились на основе следующих архитектур.[1]
· Монолитная архитектура. ОС определяется как набор модулей, взаимодействующих между собой внутри ядра системы и предоставляющих прикладному ПО входные интерфейсы для обращений к аппаратуре. Основной недостаток этого принципа построения ОС заключается в плохой предсказуемости её поведения, вызванной сложным взаимодействием модулей между собой.
· Уровневая (слоевая) архитектура. Прикладное ПО имеет возможность получить доступ к аппаратуре не только через ядро системы и её сервисы, но и напрямую. По сравнению с монолитной такая архитектура обеспечивает значительно большую степень предсказуемости реакций системы, а также позволяет осуществлять быстрый доступ прикладных приложений к аппаратуре. Главным недостатком таких систем является отсутствие многозадачности.
· Архитектура «клиент-сервер». Основной её принцип заключается в вынесении сервисов ОС в виде серверов на уровень пользователя и выполнении микроядром функций диспетчера сообщений между клиентскими пользовательскими программами и серверами — системными сервисами. Преимущества такой архитектуры:
1. Повышенная надежность, так как каждый сервис является, по сути, самостоятельным приложением и его легче отладить и отследить ошибки;
2. Улучшенная масштабируемость, поскольку ненужные сервисы могут быть исключены из системы без ущерба к её работоспособности;
3. Повышенная отказоустойчивость, так как «зависший» сервис может быть перезапущен без перезагрузки системы.
Архитектуры операционных систем реального времени
Дата публикования: 2015-02-03; Прочитано: 3091 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!