![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Для подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса).
График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид
, (2)
где - функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки
, σ – средняя квадратичная ошибка.
Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.
Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле
, (3)
где - результат i -го измерения;
- среднее арифметическое полученных значений; n – число измерений.
Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений
, а случайная абсолютная погрешность
, то результат измерений запишется в виде
.
Интервал значений от до
, в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку
является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)
Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины
, называемой коэффициентом Стьюдента, дает значение доверительного интервала
в долях средней квадратичной ошибки среднего арифметического
.
. (4)
Распределение вероятностей этой величины не зависит от σ2, а существенно зависит от числа опытов n. С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.
Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n, и столбца, соответствующего доверительной вероятности α
Таблица 1.
n | α | n | α | ||||||
0,8 | 0,9 | 0,95 | 0,98 | 0,8 | 0,9 | 0,95 | 0,98 | ||
1,9 | 2,9 | 4,3 | 7,0 | 1,5 | 2,0 | 2,6 | 3,4 | ||
1,6 | 2,4 | 3,2 | 4,5 | 1,4 | 1,9 | 2,4 | 3,1 | ||
1,5 | 2,1 | 2,8 | 3,7 | 1,4 | 1,9 | 2,4 | 3,9 |
Пользуясь данными таблицы, можно:
1) определить доверительный интервал, задаваясь определенной вероятностью;
2) выбрать доверительный интервал и определить доверительную вероятность.
При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле
. (5)
Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.
Дата публикования: 2015-02-03; Прочитано: 909 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!