Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Понятие цветовой модели. Цветовая модель HSB



Цветовая модель - это система представления широкого диапазона цветов иоснове ограниченного числа доступных красок в полиграфии или цветовых каналов в мониторах).

По принципу действия все цветовые модели разделяются на четыре класса: аддитивные, субтрактивные, перцепционные и колориметрические, хотя последние часто относят к перцепционным моделям. Рассмотрим их подробнее.

Аддитивная цветовая модель (RGB)

Давайте разберем природу цвета, отталкиваясь от физиологии зрения. Различают три типа «колбочек», проявляющих наибольшую чувствительность к трем основным цветам видимого спектра:

· красно-оранжевому (600 – 700 нм);

· зеленому (500 – 600 нм);

· синему (400 – 500 нм).

Таким образом, для восприятия любого цвета, наш мозг смешивает эти три цвета, учитывая еще один параметр - интенсивность

Рассматриваемый класс цветовых моделей представлен единственной моделью, получившей распространение на практике. В основе этой модели лежит тот факт, что большинство цветов видимого спектра можно получить путем смешения трех цветов, называемых первичными. Этими цветами являются красный (Red), зеленый (Green) и синий (Blue), a модель, соответственно, получила название RGB. Когда все три компоненты принимают максимальное значение, получается яркий белый цвет. Одинаковые нулевые значения образуют абсолютно черный цвет (точнее, отсутствие света), а одинаковые ненулевые значения соответствуют шкале серого цвета. Сочетания компонент, где их значения не равны, образуют соответствующий цветовой тон. При этом попарное смешение первичных цветов образует вторичные цвета: голубой (Cyan), пурпурный (Magenta) и желтый (Yellow).Первичные и вторичные цвета относятся к базовым цветам.

Математически цветовую модель RGB удобнее всего представлять в виде куба. В этом случае каждому цвету однозначно можно сопоставить точку внутри куба, соответствующую значениям координат X (Red), Y (Green) и Z (Blue). Тогда направление вектора, исходящего из начала координат, однозначно определяет цветность, а его модуль выражает яркость. Несмотря на простоту и наглядность цветовой модели RGB, она имеет два существенных недостатка: аппаратная зависимость (например, использование различных люминофоров и его элементарное старение в мониторах) и ограниченный цветовой охват (невозможность получения всех цветов видимого спектра).

Субтрактивные цветовые модели (CMY и CMYK)

Как формируется цвет предмета? Ответ прост, дневной свет, попадая на предмет частично поглощается, а частично отражается, вот этот отраженный спектр и видит наш глаз. Видимыми являются волны, лежащие в диапазоне от 760 до 380 миллимикрон. Ниже на рисунке представлено соответствие цвета и его длины волны.

С этой точки зрения, белым является такой цвет, который отражает полностью падающий на него свет, а черным – который поглощает весь свет.

Для описания отраженного от объекта цвета используется субтрактивная цветовая модель. Субтрактивные цвета, в отличие от аддитивных, получаются путем поглощения (вычитания - subtract) одного из первичных цветов из белого цвета, что соответствует физике процессов поглощения и отражения света от поверхности объекта:

•белый - красный = голубой;

•белый - зеленый = пурпурный;

•белый - синий = желтый.

Таким образом, для описания этих процессов используется модель CMY, в которой используется три основных субтрактивных цвета, а именно голубой (Cyan), пурпурный (Magenta) и желтый (Yellow).

В результате при смешении двух субтрактивных красок результирующий цвет затемняется (положено больше краски - поглощено больше света). Смешивание равных значений трех компонент дает оттенки серого цвета. Белый цвет получается при отсутствии всех цветов (отсутствии краски), тогда как их присутствие в полном объеме теоретически дает черный цвет. Однако в реальном технологическом процессе получение черного цвета путем смешения трех основных (вторичных) цветов на бумаге не эффективно. И на это имеется две причины. Во-первых, практически невозможно создать идеально чистые пурпурные, голубые и желтые краски. В результате при смешении этих цветов получается не чистый черный цвет, а грязно-коричневый. Во-вторых, неэкономный расход красок на создание черного цвета и это при том, что любые цветные краски дороже обычных черных.

Как следствие, на практике широкое распространение получила иная субтрактивная цветовая модель, называемая CMYK и использующая дополнительную, четвертую, черную краску. Заметим, что в названии модели используется буква К (последняя буква в слове BlaK (черный)), чтобы избежать путаницы, т.к. с буквы В в английском языке начинается и слово Blue (синий). Хотя иногда букву К трактуют как первую букву в слове Key (ключ, ключевой), т.к. эта краска является главной в процессе цветной печати и последней наносится на бумагу.

Цветовая модель CMYK имеет те же ограничения, что и RGB-модель - аппаратная зависимость и ограниченный цветовой диапазон. Причем она даже более аппаратно-зависима и цветовой диапазон еще уже, чем у RGB-модели, т.к. цветные красители имеют худшие характеристики по сравнению с люминофором в мониторах. Например, она не может воспроизводить яркие насыщенные цвета, а также ряд специфических цветов, таких как металлический и золотистый.

Об экранных цветах, которые невозможно воссоздать при печати, говорят, что они лежат вне цветового охвата модели CMYK. Для предотвращения таких ситуаций обычно используют комплекс специальных мер, включающий выявление и исключение (заменой близким) несоответствующих цветов еще на этапе создания и редактирования изображений или расширением цветового охвата модели путем добавления новых или плашечных цветов (плашечными называются цвета или краски, созданные с помощью специальных технологий и на основе использования для каждого цвета уникальных красителей или чернил). Например, к краскам CMYK добавляются еще зеленая и оранжевая краски (шестицветная печать), что позволяет существенно расширить диапазон воспроизводимых цветов. Еще один способ, возможно, наиболее эффективный, заключается в использовании систем управления цветом - CMS (color management system).

Перцепционные цветовые модели (HSB и другие)

Для устранения аппаратной зависимости, присутствующей в аддитивных и субтрактивных цветовых моделях, были разработаны ряд перцепционных (интуитивных) цветовых моделей, в основу которых положено раздельное восприятие цветности и яркости света, как воспринимает свет глаз человека. Прототипом большинства цветовых моделей, использующих эту идею, является HSV-модель, на основе которой позже появились HSB, HSL и другие модели. Общим для них является то, что цвет в них задается не в виде смеси трех основных цветов, а путем задания двух компонентов (например, в модели HSB это цветовой тон - Hue, и насыщенность - Saturation). Третий параметр во всех этих моделях различными способами задает яркость изображения и обозначается как В (Brightness - в модели HSB), L (Lightness - в HSL) или V (Value - в HSV).

Модель HSB или ее ближайший аналог - HSL - представлены в большинстве современных графических редакторов. И именно модель HSB, также представленная в Photoshop, наиболее точно соответствует способу восприятия цветов человеческим глазом (из уже рассмотренных моделей), и ее мы рассмофим более подробно.

Под цветовым тоном (Н - Hue) понимается свет с доминирующей длиной волны и для его описания обычно используется, собственно, название цвета, например, синий или желтый. В графической интерпретации этой модели каждый цвет занимает определенное место на окружности и описывается углом в диапазоне 0—60. В положении 0 находится красный цвет, 120 - зеленый цвет, 240 - синий (это первичные цвета). Вторичные цвета находятся между ними. Дополнительные цвета находятся на диаметрально противоположных сторонах цветового круга. При их смешении образуется черный цвет (при печати красками) или белый (при излучении на мониторе). Это максимально контрастные цвета и действуют они на глаз раздражающе.

Цвета, равноотстоящие друг от друга, образуют триады, дающие гармоничное сочетание цветов и насыщенную оттенками палитру. Однако понятие цветового тона не дает полного описания цвета. Кроме доминирующей длины волны, в формировании цвета участвуют и другие длины волн. Соотношение между основной, доминирующей длиной волны и всеми остальными длинами волн, образующими "серые вкрапления", называется насыщенностью. Его значение изменяется от 0 % (серый цвет) в центре круга до 100 % (полностью насыщенный) на окружности.

Третий параметр - яркость - никоим образом не влияет на цветность, но от нее зависит, как сильно цвет будет восприниматься глазом, т.е. яркость характеризует интенсивность, с которой энергия света воздействует на рецепторы глаза. При нулевой яркости мы не увидим ничего, и любой цвет будет восприниматься как черный, а максимальная яркость вызывает ощущение ослепительно белого цвета. Величина яркости также измеряется в процентах от 0е (черный) до 100 (белый). Данная компонента является нелинейной, что соответствует природе глаза.

Модель HSB носит абстрактный характер, т.к. ее компоненты на практике измерить невозможно. Чаще всего компоненты модели получают путем математического пересчета измеренных значений RGB-модели. Как следствие, в наследство от RGB-модели она получает и ограниченное цветовое пространство. Кроме того, яркость и цветовой тон не являются полностью независимыми параметрами, т.к. значительное изменение яркости влияет на изменение цветового тона, что приводит к нежелательным эффектам в виде цветовых отливов (сдвигов). Вместе с тем HSB-модель обладает двумя важными преимуществами: большей аппаратной независимостью (по сравнению с двумя предыдущими моделями) и более простым и интуитивно понятным механизмом управления цветом.

Понятие формата файла. Варианты классификации форматов файлов. Возможности изменения формата файла.

Формат — спецификация структуры данных, записанных в компьютерном файле. Формат файла иногда указывается в его имени, как часть, отделённая точкой (обычно эту часть называют расширением имени файла, хотя, строго говоря, это неверно). Например, окончание имени (расширение) «.txt» обычно используют для обозначения файлов, содержащих только текстовую информацию, а «.doc» — содержащих текстовую информацию, структурированную в соответствии со стандартами программы Microsoft Word. Файлы, содержимое которых соответствует одному формату (реже — одному семейству форматов), иногда называют файлами одного типа.

Так как общепринятая в вычислительной технике концепция файла — неструктурированная последовательность байтов, компьютерные программы, сохраняющие в файлах структурированные данные, должны как-то преобразовывать их в последовательность байтов и наоборот (в ООП эти операции называются, соответственно, «сериализацией» и «десериализацией»; для текстовой информации последнее также называется «разбор» или «парсинг»). Алгоритм этого преобразования, а также соглашения о том, как различные фрагменты информации располагаются внутри файла, и составляют его «формат».

Различные форматы файлов могут различаться степенью детализации, один формат может быть «надстройкой» над другим или использовать элементы других форматов. Например,текстовый формат накладывает только самые общие ограничения на структуру данных. Формат HTML устанавливает дополнительные правила на внутреннее устройство файла, но при этом любой HTML-файл является в то же время текстовым файлом.

Спецификации

Для многих форматов файлов существуют опубликованные спецификации, в которых подробно описана структура файлов данного формата, то, как программы должны кодировать данные для записи в этот формат и как декодировать их при чтении. Большинство таких спецификаций свободно доступны, некоторые распространяются за плату.

Иногда компании могут считать определённые форматы файлов своей коммерческой тайной и не публиковать их. Хорошо известный пример — форматы файлов пакета Microsoft Office. В некоторых случаях компания, выпустившая приложение, просто не считает нужным тратить время на написание подробной спецификации.

Если спецификация формата недоступна, то для обеспечения совместимости программы с данным форматом приходится заниматься обратной разработкой. В большинстве или во всех странах форматы файлов не защищены законами об авторских правах. Однако в некоторых странах патентами могут быть защищены алгоритмы, используемые для кодирования данных в какой-либо формат. Например, в широко распространённом формате GIF использовался патентованный алгоритм (срок действия патентов в разных странах истек в 2003-2004 гг.), что привело к разработке альтернативного формата PNG.

Определение типа файла

Для того, чтобы правильно работать с файлами, программы должны иметь возможность определять их тип. По историческим причинам, в разных операционных системах используются разные подходы для решения этой задачи.





Дата публикования: 2015-02-03; Прочитано: 2177 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...