Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Подготовка нефти к переработке



Нефть, извлекаемая из скважин, всегда содержит в себе попутный газ, механические примеси и пластовую воду, в которой растворены различные соли, чаще всего хлориды натрия, кальция и магния, реже — карбонаты и сульфаты. Обычно в начальный период эксплуатации месторождения добывается безводная или малообводненная нефть, но по мере добычи ее обводненность увеличивается и достигает 90…98 %. Очевидно, что такую «грязную» и сырую нефть, содержащую к тому же легколетучие органические (от метана до бутана) и неорганические (H2S, CO2) газовые компоненты, нельзя транспортировать и перерабатывать на нефтеперерабатывающих заводах без тщательной ее промысловой подготовки.

Нефть подготавливается к переработке в 2 этапа — на нефтепромысле и на нефтеперерабатывающем заводе с целью отделения от нее попутного газа, механических примесей, воды и минеральных солей.

Обессоливание нефтей на нефтеперерабатывающем заводе. В связи с продолжающимся укрупнением комбинированием технологических установок и широким применением каталитических процессов требования к содержанию хлоридов металлов в нефтях, поступающих на переработку, неуклонно повышаются. При снижении содержания хлоридов до 5 мг/л из нефти почти полностью удаляются такие металлы, как железо, кальций, магний, натрий и соединения мышьяка, а содержание ванадия снижается более чем в 2 раза, что исключительно важно с точки зрения качества реактивных и газотурбинных топлив, нефтяных коксов и др. нефтепродуктов. На современном отечественном нефтеперерабатывающем заводе считается вполне достаточным обессоливание нефтей до содержания хлоридов 3...5 мг/л и воды до 0,1 % мас.

Чистая нефть, не содержащая неуглеводных примесей, и пресная вода взаимно нерастворимы, и при отстаивании эта смесь легко расслаивается. Однако при наличии в нефти таковых примесей система нефть–вода образует трудноразделимую нефтяную эмульсию.

Эмульсии представляют собой дисперсные системы из двух взаимно мало- или нерастворимых жидкостей, в которых одна диспергирована в др. в виде мельчайших капель (глобул). Жидкость, в которой распределены глобулы, является дисперсионной средой, а диспергированная жидкость — дисперсной фазой. Различают два типа нефтяных эмульсий: нефть в воде (Н/В) — гидрофильная и вода в нефти (В/Н) — гидрофобная. В первом случае нефтяные капли образуют дисперсную фазу внутри водной среды, во втором — капли воды образуют дисперсную фазу в нефтяной среде.

Образование эмульсий связано с поверхностными явлениями на границе раздела фаз дисперсной системы, прежде всего поверхностным натяжением. Поверхностно-активные вещества обладают способностью понижать поверхностное натяжение. Это свойство обусловлено тем, что добавленное поверхностно-активное вещество избирательно растворяется в одной из фаз дисперсной системы, концентрируется и образует адсорбционный слой — пленку поверхностно-активного вещества на границе раздела фаз. Снижение поверхностного натяжения способствует увеличению дисперсности дисперсной фазы, а образование адсорбционного слоя — своеобразного панциря на поверхности глобул — препятствует и коалесценции при отстаивании. Вещества, способствующие образованию и стабилизации эмульсий, называются эмульгаторами; вещества, разрушающие поверхностную адсорбционную пленку стойких эмульсий, — деэмульгаторами.

Эмульгаторами обычно являются полярные вещества нефти, такие как смолы, асфальтены, асфальтеновые катализаты и их ангидриды, соли нафтеновых кислот, а также различные органические примеси. Установлено, что в образовании стойких эмульсий принимают участие также различные твердые углеводы — парафины и церезины нефтей. Тип образующейся эмульсии в значительной степени зависит от свойств эмульгатора: эмульгаторы, обладающие гидрофобными свойствами, образуют эмульсию типа В/Н, т. е. гидрофобную, а эмульгаторы гидрофильные — гидрофильную эмульсию типа Н/В. В промысловой практике чаще всего образуется гидрофобная эмульсия, т. к. эмульгаторами в этом случае являются растворимые в нефти смолисто-асфальтеновые вещества, соли органических кислот, а также тонкоизмельченные частицы глины, окислов металлов и др. Эти вещества, адсорбируясь на поверхности раздела нефть–вода, попадают в поверхностный слой со стороны нефти и создают прочную оболочку вокруг частиц воды. Наоборот, хорошо растворимые в воде и хуже в углеводах гидрофильные эмульгаторы типа щелочных металлов нефтяных кислот (продукт р-ции при щелочной очистке) адсорбируются в поверхностном слое со стороны водной фазы, обволакивают капельки нефти и таким образом способствуют образованию гидрофильной нефтяной эмульсии.

Разрушение нефтяных эмульсий применением деэмульгаторов, представляющих собой синтетические поверхностно-активные вещества, обладающих по сравнению с содержащимися в нефтях природными эмульгаторами более высокой поверхностной активностью, может быть результатом:

1) адсорбционного вытеснения с поверхности глобул воды эмульгатора, стабилизирующего эмульсию;

2) образования нестабильных эмульсий противоположного типа;

3) химического растворения адсорбционной пленки.

В результате на поверхности глобул воды образуется гидрофильный адсорбционный слой со слабой структурно-механической прочностью, т. е. происходит дестабилизация водонефтяной эмульсии.

Образовавшиеся из стойких нестойкие эмульсии затем легко коалесцируют в крупные глобулы воды и осаждаются из дисперсионной среды (нефти). Именно стадия дестабилизации является лимитирующей суммарный процесс обезвоживания и обессоливания нефти.

На установках обезвоживания и обессоливания нефти (Электрообессоливающая установка (ЭЛОУ) широко применяются водорастворимые, водонефтерастворимые и нефтерастворимые деэмульгаторы. Последние более предпочтительны, поскольку:

— они легко смешиваются (даже при слабом перемешивании) с нефтью, в меньшей степени вымываются водой и не загрязняют сточные воды;

— их расход практически не зависит от обводненности нефти;

— оставаясь в нефти, предупреждают образование стойких эмульсий и их «старение»;

— обладают ингибирующими коррозию металлов свойствами;

— являются легкоподвижными жидкостями с низкой температурой и могут применяться без растворителя, удобны для транспортирования и дозировки.

В качестве растворителей нефтерастворимого деэмульгатора применяются низкомолекулярные спирты (метиловый, изопропиловый и др.), арены и их смеси в различных соотношениях.

Водорастворимые деэмульгаторы применяют в виде 1–2 %-х водных растворов. Они частично вымываются дренажной водой, что увеличивает их расход на обессоливание.

К современным деэмульгаторам предъявляются следующие основные требования:

— они должны обладать максимально высокой деэмульгирующей активностью, быть биологически легко разлагаемы (если водорастворимые), нетоксичными, дешевыми, доступными;

— не должны обладать бактерицидной активностью (от которой зависит эффективность биологической очистки сточных вод) и корродировать металлы.

Этим требованиям более полно удовлетворяют и потому чаще всего применяются неионогенные деэмульгаторы. Они почти полностью вытеснили ранее широко применявшиеся ионоактивные (в основном анионоактивные) деэмульгаторы, такие как отечественный нейтрализованный черный контакт.

Их расход на установках обессоливания нефти составлял десятки кг/т. К тому же они биологически не разлагаются, и применение их приводило к значительным загрязнениям водоемов.

Неионогенные поверхностно-активные вещества в водных растворах не распадаются на ионы. Их получают присоединением окиси алкилена (этилена или пропилена) к органическим соединениям с подвижным атомом водорода, т. е. содержит различные функциональные группы, такие как карбоксильная, гидроксильная, аминная, амидная и др. В качестве таковых соединений наибольшее применение нашли органические кислоты, спирты, фенолы, сложные эфиры, aмины и амиды кислот.

В нашей стране широкое применение получили следующие неионогенные деэмульгаторы:

— ОЖК — оксиэтилированные жирные кислоты;

— ОП-10 — окиэтилированные алкифенолы;

— блоксополимеры полиоксиалкиленов следующих типов: 186 и 305 — на основе пропиленгликоля; 157, 385 — на основе этилендиамина (дипроксамин 157); 116 и 226 — на основе синтетических жирных кислот и 145 и 295 — на основе двух-атомных фенолов.

Блоксополимеры оксиалкиленов являются более эффективными и универсальными деэмульгаторами, характеризующимися малым расходом (10–30 г/т) в процессах обезвоживания и обессоливания.

У нас и за рубежом синтезировано большое число высокоэффективных деэмульгаторов. Из деэмульгаторовров ФРГ, применяемых в нашей стране, высокой деэмульгирующей активностью обладают диссольваны 4400, 4411, 4422 и 4433, представляющие собой 65%-е растворы поверхностно-активных веществ в воде или метиловом спирте с молекулярной массой 2500…3000, которые синтезированы на основе алкиленгликолей, а также сепарол, бескол, прохалит и др. Характерно, что деэмульгаторы американских и английских фирм «Петролит», «Третолит» и др. в большинстве случаев плохо растворимы в воде, по эффективности близки к диссольвану и применяются в виде растворов в ароматических углеводах, выкипающих в пределах 160…240 °С. Высокой деэмульгирующей активностью обладают деэмульгаторы Голландии, Франции, Италии, Японии и др.

Промышленный процесс обезвоживания и обессоливания нефтей, который основан на применении методов не только химической, но и электрической, тепловой и механической обработок нефтяных эмульсий, направленных на разрушение сольватной оболочки и снижение структурно-механической прочности эмульсий, создание более благоприятных условий для коалесценции и укрупнения капель и ускорения процессов осаждения крупных глобул воды, осуществляется на установках ЭЛОУ.

Электрообработка эмульсий заключается в пропускании нефти через электрическое поле, преимущественно переменное промышленной частоты и высокого напряжения (15…44 кВ). В результате индукции электрического поля диспергированные капли воды поляризуются, деформируются (вытягиваются) с разрушением защитных пленок, и при частой смене полярности электродов (50 раз в секунду) увеличивается вероятность их столкновения и укрупнения, и в итоге возрастает скорость осаждения глобул с образованием отдельной фазы. По мере увеличения глубины обезвоживания расстояния между оставшимися каплями увеличиваются и коалесценция замедляется. Поэтому конечное содержание воды в нефти, обработанной в электрическом поле переменного тока, колеблется от следов до 0,1 %. Коалесценцию оставшихся капель воды можно усилить повышением напряженности электрического поля до определенного предела. При дальнейшем повышении напряженности поля ускоряются нежелательные процессы электрического диспергирования капель и коалесценция снова замедляется. Поэтому применительно к конкретному типу эмульсий целесообразно подбирать оптимальные размеры электродов и расстояния между ними. Количество оставшихся в нефтях солей зависит как от содержания остаточной воды, так и от ее засоленности. Поэтому с целью достижения глубокого обессоливания осуществляют промывку солей подачей в нефть оптимального количества промывной (пресной) воды. При чрезмерном увеличении количества промывной воды растут затраты на обессоливание нефти и количество образующихся стоков. В этой связи, с целью экономии пресной воды, на электрообессоливающих установках многих нефтеперерабатывающих заводов успешно применяют двухступенчатые схемы с противоточной подачей промывной воды.

Тепловая обработка эмульсий заключается в подогреве до оптимальной для данной нефти температуры (60…150 °С) в зависимости от ее плотности, вязкостно-температурной характеристики, типа эмульсии и давления в электродегидраторе или отстойнике термохимического обезвоживания. Повышение температуры до определенного предела способствует интенсификации всех стадий процесса деэмульгирования: во-первых, дестабилизации эмульсий в результате повышения растворимости природных эмульгаторов в нефти и расплавления бронирующих кристаллов парафинов и асфальтенов и, во-вторых, возрастанию скорости осаждения капель воды в результате снижения вязкости и плотности нефти, тем самым уменьшению требуемого расхода деэмульгатора. Обычно как оптимальную в дегидраторах подбирают такую температуру, при которой вязкость нефти составляет 2…4 сСт. Многие нефти достаточно хорошо обессоливаются при 70…90 °С. При повышении температуры нагрева нефти приходится одновременно повышать и давление, чтобы поддерживать жидкофазное состояние системы и уменьшить потери нефти и пожароопасность. Однако повышение давления вызывает необходимость увеличения толщины стенок аппаратов. Современные модели электродегидраторов рассчитаны на давление до 1,8 МПа. На технико-экономические показатели электрообессоливающей установки влияют также интенсивность и продолжительность перемешивания эмульсионной нефти с раствором деэмульгаторов. Так, для деэмульгаторов с малой поверхностной активностью, особенно когда они плохо растворимы в нефти, требуется более интенсивное и продолжительное перемешивание, но не настолько, чтобы образовалась высокодисперсная система, которая плохо осаждается. Обычно перемешивание нефти с деэмульгатором осуществляют в сырьевом центробежном насосе. Однако лучше иметь такие специальные смесительные устройства, как диафрагмы, клапаны, вращающиеся роторы и т. д. Целесообразно также иметь на электрообессоливающей установке дозировочные насосы малой производительности.

Основным аппаратом электрообессоливающей установки является электродегидратор, где, кроме электрообработки нефтяной эмульсии, осуществляется и отстой (осаждение) деэмульгированной нефти, т. е. он является одновременно отстойником. Среди применяемых в промысловых и заводских электрообессоливающих установках различных конструкций (вертикальных, шаровых и горизонтальных) более эффективными оказались горизонтальные электродегидраторы. По сравнению с использовавшимися ранее вертикальными и шаровыми горизонтальные электродегидраторы обладают следующими достоинствами:

— более благоприятными условиями для осаждения капель воды, которые можно оценить удельной площадью горизонтального сечения (зеркала отстоя) и линейной скоростью движения нефти;

— примерно в 3 раза большей удельной производительностью при приблизительно в 1,5 раза меньшей удельной массе и стоимости аппарата;

— простотой конструкции, меньшим количеством электрооборудования при большей площади электродов, удобством монтажа, обслуживания и ремонта;

— способностью работать при повышенных давлении и температуре.

Электродегидратор представляет собой горизонтальный цилиндрический аппарат, внутри которого посередине горизонтально параллельно друг другу на расстоянии 25…40 см установлены 3 пары электродов, между которыми поддерживается напряжение 32…33 кВ. Ввод сырья в электродегидратор и вывод из него осуществляются через расположенные в нижней и верхней частях аппарата трубчатые перфорированные распределители (маточники), обеспечивающие равномерное распределение восходящего потока нефти. В нижней части электродегидратора между распределителем и электродами поддерживается определенный уровень воды, содержащей деэмульгатор, где происходит термохимическая обработка эмульсии и отделение наиболее крупных капель воды. В зоне между зеркалом воды и плоскостью нижнего электрода нефтяная эмульсия подвергается воздействию слабого электрического поля, а в зоне между электродами — воздействию электрического поля высокого напряжения.

Технико-экономические показатели электрообессоливающей установки значительно улучшаются при применении более высокопроизводительных электродегидраторов за счет уменьшения количества теплообменников, сырьевых насосов, резервуаров, приборов КИПиА и т. д. (экономический эффект от укрупнения) и при комбинировании с установками прямой перегонки нефти за счет снижения капитальных и энергозатрат, увеличения производительности труда и т. д. (эффект от комбинирования). Так, электрообессоливающая установка с горизонтальными электродегидраторами типа 2ЭГ-160, комбинированная с установкой первичной перегонки нефти (атмосферно-вакуумная трубчатка), по сравнению с отдельно стоящей электрообессоливающей установкой с шаровыми, при одинаковой производительности (6 млн т/г) имеет примерно в 1,5 раза меньшие капитальные затраты, эксплуатационные расходы и себестоимость обессоливания.

3. Понятия: планирование, план. Классификация планов. (Привести конкретные примеры видов планов для ГПС). Требования предъявляемые к текущим планам.

БИЛЕТ № 7





Дата публикования: 2015-02-03; Прочитано: 786 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...