![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Все разряды Y инвертируются, что дает дополнение каждой цифры Y до 15, при этом получается обратный код двоично-десятичного Y с избытком 6, обозначенный Уобр6. Затем, складывая X + Уобр6 и прибавляя 1 к младшему разряду, получаем Z. Результат Z' является положительным числом, если из старшей тетрады его возникает перенос, при этом Z' корректируется по тем же правилам, что и при сложении модулей.
Если из старшей тетрады 2' нет переноса, то получен отрицательный результат, представленный в дополнительном коде. В этом случае код Z' инвертируется и к нему прибавляется 1 младшего разряда. Новое Z' корректируется, при этом к тетрадам, из которых возникал перенос при получении (X + Уобр6 + 1), прибавляется 10, а к остальным не прибавляется.
Выполнение сложения и вычитания чисел со знаками сводится к выполнению сложения или вычитания модулей путем определения фактической выполняемой операции по знакам операндов и виду выполняемой операции. Знак результата определяется отдельно. Например, при X < 0 и Y < 0 вычитание X- Y заменяется вычитанием | Y | - | X |. Затем знак результата меняется на противоположный знаку (| Y | - | X |).
Двоично-десятичное умножение сводится к образованию и многократному сложению частичных двоично-десятичных произведений. Умножение двоично-десятичных чисел выполняется следующим образом:
1) сумма частичных произведений полагается равной нулю;
2) анализируется очередная цифра (тетрада) множителя, и множимое прибавляется к сумме частичных произведений столько раз, какова цифра множителя;
3) сумма частичных произведений сдвигается вправо на 1 тетраду, и повторяются действия, указанные в п. 2, пока все цифры множителя не будут обработаны.
Для ускорения умножения часто отдельно формируются кратные множимого 8Х, 4Х, 2Х и IX, при наличии которых уменьшается число сложений при выполнении п. 2.
Двоично-десятичное деление выполняется путем многократных вычитаний, подобно тому, как это делается при обычном делении.
Операции над числами с плавающей точкой.
Арифметические операции над числами с плавающей запятой более сложны, чем операции над числами с фиксированной запятой. Алгоритм сложения и вычитания чисел с плавающей запятой выглядит следующим образом:
Производится выравнивание порядков чисел. Порядок меньшего (по модулю) числа принимается равным порядку большего, а мантисса меньшего числа сдвигается вправо на число разрядов, равное разности порядков чисел.
Производится сложение (вычитание) мантисс, в результате чего получается мантисса суммы (разности).
Порядок результата принимается равным порядку большего числа.
Полученная сумма (разность) нормализуется.
Выравнивание порядков начинается с их сравнения. Мантисса числа с меньшим порядком при выравнивании сдвигается вправо на число разрядов, равное разности порядков.
Сложение (вычитание) мантисс производится по правилам сложения (вычитания) чисел с фиксированной запятой.
При умножении чисел с плавающей запятой порядки сомножителей складываются, а мантиссы перемножаются. Произведение нормализуется, и ему присваивается знак плюс, если сомножители имеют одинаковые знаки, и знак минус, если знаки разные.
Если мантисса множимого или множителя равна 0, то произведению можно присвоить значение 0 без выполнения умножения мантисс. Если при суммировании порядков возникло переполнение и порядок отрицательный, то это означает, что произведение меньше минимального представляемого в машине числа, и в качестве результата операции может быть записан 0 без перемножения мантисс.
Если при суммировании порядков возникает переполнение и порядок положительный, может оказаться, что результат все-таки находится в диапазоне чисел, представляемых в машине, так как при умножении мантисс возможно нарушение нормализации вправо, и после нормализации мантиссы переполнение в порядке может исчезнуть.
При делении чисел с плавающей запятой мантисса частного равна частному от деления мантиссы делимого на мантиссу делителя, а порядок частного - разности порядков делимого и делителя. Частное нормализуется, и ему присваивается знак плюс, если делимое и делитель имеют одинаковые знаки, и знак минус, если разные.
Если делимое равно 0, то в частное может быть записан 0 без выполнения деления. Если при вычитании порядков образовалось переполнение с положительным знаком или если делитель равен 0, то деление не производится и формируется сигнал прерывания.
При делении нормализованных чисел с плавающей запятой может оказаться, что мантисса делимого больше мантиссы делителя, и мантисса частного образуется с переполнением. Для устранения этого явления перед делением мантисс нарушают нормализацию делителя сдвигом на разряд влево. Тогда нарушения нормализации частного влево не возникает.
Многофункциональные АЛУ.
По характеру использования элементов и узлов АЛУ делятся на блочные и многофункциональные. В блочном АЛУ операции над числами с фиксированной и плавающей точкой, десятичными числами и алфавитно-цифровыми полями выполняются в отдельных блоках, при этом повышается скорость работы, так как блоки могут параллельно выполнять соответствующие операции, но значительно возрастают затраты оборудования. В многофункциональных АЛУ операции для всех форм представления чисел выполняются одними и теми же схемами, которые коммутируются нужным образом в зависимости от требуемого режима работы.
Устройство управления ЭМВ и ВС.
Устройство управления (УУ) управляет работой процессора, обеспечивая автоматическое выполнение команд программы. Выполнение команды процессором представляет собой последовательность следующих действий (иногда называемых машинными циклами):
- выборка команды из памяти и ее декодирование (дешифрация кода операции);
- формирование адреса следующей команды;
- формирование исполнительного адреса операнда и выборка его из памяти;
- исполнение операции и запись результата в память.
Для выполнения каждого машинного цикла необходим ряд управляющих сигналов, формируемых устройством управления.
В зависимости от способа формирования управляющих сигналов различают два основных типа УУ:
- аппаратные (с жесткой или схемной логикой);
- микропрограммные (с хранимой в памяти логикой).
В аппаратных УУ для каждой операции, задаваемой кодом операции команды, строится набор схем, которые в нужных тактах формируют соответствующие управляющие сигналы.
В УУ с микропрограммным управлением каждой операции соответствует набор микрокоманд, хранимых в памяти микрокоманд. Каждая микрокоманда несет информацию о микрооперациях, подлежащих выполнению в течение машинного такта и указания, какая микрокоманда должна быть выбрана из памяти следующей. Последовательность микрокоманд, выполняющая одну машинную команду или некоторую процедуру, образует микропрограмму.
Устройство управления с жесткой логикой.
Управляющие устройства с жесткой логикой представляют собой логические схемы, вырабатывающие распределенные во времени управляющие сигналы. В отличие от управляющих устройств с хранимой в памяти логикой в аппаратных УУ нельзя изменить логику работы без изменения их схемы. Типичная структурная схема управляемого автомата с жесткой логикой показана на рисунке 4.4.2.1. Её можно рассматривать в качестве автомата с конечным числом состояний (конечный автомат), который на каждом такте
Рисунок 4.4.2.1- Схема блока формирования сигналов управления
переходит из одного состояния в другое, определяемое содержимым регистра команды, кодами условий и внешними сигналами. Выходами такого автомата являются управляющие сигналы. Формируемая им последовательность операций задается физическими связями между логическими элементами.
В состав схемы входят регистр кода операции, являющейся частью регистра команд процессора, счетчик тактов, дешифратор тактов и дешифратор кода операции (Дешифратор КОП), а также логические схемы формирования управляющих сигналов. На счетчик тактов поступают сигналы от генератора тактовых импульсов (ГТИ). Состояние счетчика представляют собой номера тактов, изменяющие от 1 до m. Дешифратор тактов формирует на i-м выходе единичный сигнал при i-м состоянии счетчика тактов, т.е. во время i-го такта.
Принцип построения логических схем формирования управляющих сигналов поясняется на рисунке 4.4.2.2 На нем изображен фрагмент схемы, обеспечивающий выработку управляющих сигналов y1, y2 и y3 выполнения команды сложения на тактах T1,T2, T6.
В общем случае значения управляющих сигналов зависят еще от оповещающих сигналов U={u1, u2… un}, отражающих ход вычислительного процесса. Для реализации этих зависимостей логические элементы, представленные на рисунке 4.3.2.2, берутся многовходовыми и на них подаются требуемые сигналы логических условий.
Рисунок 4.4.2.2- Фрагмент логической схемы формирования управляющих сигналов
Сигналы y0 и yk (см. рисунок 4.3.2.1) обычно используются для определения моментов начала и окончания выполнения команд. С этой целью они используются для управления работой счетчика тактов. Управляющий сигнал y0 (Пуск) указывает на начало выполнения команды. Когда он установлен в 1, в конце каждого тактового цикла значение счетчика увеличивается на 1. Если же его значение становится равным 0, отсчет шагов прекращается. Сигнал yk (Останов) сбрасывает счетчик тактов в начальное состояние, обеспечивая начало нового цикла выборки команды.
Серьезным недостатком рассмотренных схем является одинаковое число тактов, необходимых для выполнения всех команд, значение которого выбирается по наиболее длинной команде. Это приводит к непроизводительным затратам времени и, как следствие, к уменьшению быстродействия процессора. Для устранения этого недостатка применяют УУ с переменным числом тактов, в котором используют счетчик тактов с изменяемым модулем счета. Для коротких команд используют счетчик с небольшим модулем счета и наоборот.
При реализации простой системы команд узлы устройства управления с жесткой логикой экономичны и позволяют обеспечить наибольшее быстродействие среди всех возможных методов построения УУ. Однако с возрастанием сложности системы команд усложнялись и схемы автоматов с жесткой логикой, при этом их быстродействие уменьшалось.
Принцип микропрограммного управления.
Альтернативой аппаратного способа реализации УУ является микропрограммное управление, согласно которому сигналы генерируются программой, подобной программе, написанной на машинном языке для ЭВМ. Этот принципиально иной подход был предложен английским ученым М. Уилксом в начале 50-х годов. Его называют принципом микропрограммного управления. Он позволяет преодолеть сложности реализации УУ с жесткой логикой. В основу принципа микропрограммного управления заложен тот факт, что каждой машинной команде соответствует уникальный код, называемый микрокомандой. Последовательность микрокоманд, реализующих машинную команду, образует микропрограмму. Микропрограммы размещаются в специальной управляющей памяти, называемой памятью микропрограмм. Выполнение команд в процессоре реализуется путем последовательного извлечения микрокоманд из памяти микропрограмм с последующей их дешифрацией для формирования управляющих сигналов, необходимых при выполнении конкретной команды.
Память ЭВМ. Назначение. Классификация. Основные
Компью́терная па́мять (устройство хранения информации, запоминающее устройство) — часть вычислительной машины, физическое устройство или среда для хранения данных, используемых в вычислениях, в течение определённого времени. Память, как и центральный процессор, является неизменной частью компьютера с 1940-х. Память в вычислительных устройствах имеет иерархическую структуру и обычно предполагает использование нескольких запоминающих устройств, имеющих различные характеристики.
КЛАССИФИКАЦИЯ:
Дата публикования: 2015-02-03; Прочитано: 819 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!