Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Электробезопасность. 104.В результате воздействия электрического тока могут возникнуть местные электротравмы (ожоги, электрические знаки



104.В результате воздействия электрического тока могут возникнуть местные электротравмы (ожоги, электрические знаки, металлизация кожи, механические повреждения, ослепление светом электрической дуги) или произойти электрический удар, который характеризуется общим поражением организма и может сопровождаться судорогами, потерей сознания, остановкой дыхания и/или сердечной деятельности, клинической смертью.

105.Сопротивление тела человека электрическому току складывается из сопротивления верхнего ороговевшего слоя кожи и сопротивления внутренних тканей. Величина омического сопротивления кожи зави­сит от ее состояния (поврежденная или нет, сухая или влажная) и приложенного напряжения. С увеличением приложенного напряже­ния сопротивление кожи падает с десятков и сотен килом при на­пряжении менее 3 В до сотен Ом при напряжении свыше 100 В, что обусловлено ее низкой электрической прочностью. Кроме того, поскольку сопротивление тела человека носит активно-емкостной характер, величина сопротивления зависит от частоты приложенного напряжения, уменьшаясь с увеличением частоты. При измерении напряжений и токов прикосновения в соответствии с ГОСТ 12.1.038-88 сопротивление тела человека моделируется резистором сопротивлением от 0,85 до 6,7 кОм в зависимости от величины напряжения и продолжительности воздействия.

106.Разность потенциалов между двумя точками на поверхности земли на расстоянии шага (0,8 метра) называется напряжением шага или шаговым напряжением. Разность потенциалов между двумя точками, которых одновременно касается человек, носит название -напряже­ния прикосновения.

107.Под защитным заземлением понимают преднамеренное соединение нетоковедущих частей электрооборудования с землей или ее эквива­лентом. Принцип действия защитного заземления основан на сниже­нии до безопасной величины напряжения прикосновения, возникаю­щего при повреждении изоляции токоведущих частей электрообору­дования и появлении потенциала на его корпусах. Защитное заземле­ние применяют в трехфазных трехпроводных сетях с изолированной нейтралью при напряжении до 1000 Вис любым режимом нейтрали при напряжении свыше 1000 В.

108.Под занулением принято понимать искусственное соединение нетоковедущих частей электрооборудования с заземленной нейтралью сети. Проводник, с помощью которого выполнено это соединение, называется нулевым защитным проводником. В отличие от рабочего нулевого провода, по которому протекают токи уравновешивания фаз, в цепи защитного нулевого провода ток протекает только при появлении токов утечки на подключенные к нему части оборудова­ния. В результате при пробое фазы на корпус возникает режим короткого замыкания и поврежденный участок сети отключается с по­мощью плавкого предохранителя или автомата защиты. Однако до момента аварийного отключения на корпусе оборудования может существовать высокое напряжение, опасное для жизни. Поэтому защита в таких сетях должна срабатывать быстро. Зануление приме­няют в трехфазных четырехпроводных сетях с заземленной иейтралью при напряжении сети до 1000 В.

109. Во многих случаях быстродействие обычной защиты оказывается недостаточным (например, во взрывоопасных помещениях) или по­рог срабатывания защиты слишком высок. В таких случаях приме­няют защитное отключение - быстродействующую защиту, срабаты­вающую при появлении опасности поражения электрическим током. В зависимости от вида исполнения защита может срабатывать при появлении на корпусе электрооборудования напряжения, превы­шающего порог срабатывания реле, или отключать поврежденный участок сети, если ток утечки изоляции превышает допустимую вели­чину.

110. При занулении оборудования помимо первичного заземлителя нейтрали применяют вторичное заземление защитного нулевого проводa с целью обеспечения безопасности при случайном обрыве нейтра­ли. Цель вторичного заземления нейтрали - исключить возможность появления фазного напряжения на корпусах электрооборудования при замыкании фазы на землю.

111. В качестве естественных заземлителей могут использоваться ме­таллические конструкции, имеющие хороший контакт с землей - во­допроводные трубы, стальная оболочка бронированных кабелей и т.п. Не разрешается использовать в качестве естественных заземлителей трубы газопроводов, центрального отопления, канализации, свинцовые оболочки кабелей связи. Арматура железобетонных сооружений может использоваться в качестве естественных заземлителей, если она имеет антикоррозионное покрытие.

112. При заземлении электроустановок напряжением свыше 100 кВ допускается значение потенциала заземлителя до 10 кВ. При этом величина шагового напряжения и напряжения прикосновения могут достигать опасных для человека величин. Поэтому при заземлении установок на напряжение свыше 1000 В и токами замыкания более 500А разрешается применять только контурные заземляющие устройства, т.е. такие, которые располагаются на одной площадке с заземлённым оборудованием. Для снижения шагового напряжения и напряжения прикосновения осуществляют выравнивание потенциала по поверхности площадки за счет более частого расположения заземлителей и соединительных полос.

113. Одновременное снижение напряжения прикосновения и шага человека, работающего с электрооборудованием на открытой площадке, возможно при применении контурного заземления и выравнивании потенциала по поверхности площадки за счет более частого расположения заземлителей и соединительных полос.

114. Поскольку на дачном участке используется сеть с глухозаземлённой нейтралью, то использовать в качестве меры защиты заземление без занулениея недопустимо. В этом случае обязательно должно быть выполнено зануление, а самодельное заземляющее устройство может использоваться только в качестве вторичного заземлителя. Если использовать его в качестве единственной меры безопасности, то при пробое фазы на корпус величина тока замыкания составит I=220/30=7,3 А, что меньше порога срабатывания (10А), и защита не сработает.

115. Максимальный ток через вторичный заземлитель при пробое на корпус составляет Im = Uf /R0 = 220/20 = 11 [А]. Так как защита может сработать лишь при условии, что ее номинальный рабочий ток меньше тока короткого замыкания, то очевидно, что при мощности электрооборудования, равной или большей N = Uf ·Im=220·11 = 2420 [ВА], защита не сработает.

116. В сети с изолированной нейтралью величина тока замыкания фазы на корпус определяется величиной сопротивления изоляции неповрежденных фаз и не может превышать в данном случае значения I=Uf /(0,5Rf) =220/(0,5·106)= 4,4·10-4 [А], что существенно ниже рабочего тока предохранителя (1 А). Следовательно, защита не сработает.

117. Эта задача аналогична предыдущей. Поскольку и в этом случае величина тока замыкания не будет превышать 4,4·10-4 А, то защита, рассчитанная на рабочий ток 10 А, не сработает.

118.Аналогично задаче №116 найдем ток замыкания фазы на землю I=Uf/(0,5Rf)=220/(0,5·106) = 4,410-4[А]. При таком токе падение на­пряжения на заземлителе составит U=IR = 4,4·10-4 ·10 = 4,4·10-3 [В]. Следовательно, даже если человек будет находиться в зоне нулевого потенциала, напряжение прикосновения не превысит 4,4 мВ.

119. Отличие этой задачи от предыдущей заключается в том, что исполь­зуется не выносное, а контурное заземляющее устройство. В этом случае человек находится под тем же потенциалом, что и заземлитель. Следовательно, напряжение прикосновения будет близко к нулю не­зависимо от величины сопротивления заземлителя, и расчет можно не проводить.

120. При пробое фазы на корпус в сети с глухозаземленной нейтралью величина напряжения на корпусе будет определяться, в основном, па­дением напряжения на омическом сопротивлении фазного и защит­ного нулевого проводников, поскольку сопротивление первичного и вторичного заземляющих устройств существенно (в данном случае в 8 раз) выше сопротивления защитного нулевого проводника. Следова­тельно, напряжение прикосновения составит

Up= Uf··R0/(Rf+R0) = 220·0,5/(0,25+0,5)= 146 В.

121. Задача решается аналогично предыдущей. В этом случае:

Up=UfR0/(Rf+R0)=380·0,5/(0,25+0,5) = 254 [B].

122. Бетонный пол является токопроводящим, следовательно, цех отно­сится к помещениям с повышенной опасностью поражения электри­ческим током, и при напряжении сети с глухозаземленной нейтралью 220/380 В необходимо занулить корпуса станков. Токопроводящий пол, на котором установлены станки, будет в этом случае играть роль вторичного заземляющего устройства.

123. Поскольку помещение, в котором установлено оборудование, отно­сится к классу "без повышенной опасности поражения электрическим током", и напряжение сети менее 380 В, то в соответствий с требова­ниями ПУЭ занулять корпуса электрооборудования не требуется.

124. Так как напряжение сети равно 380 В, то несмотря на то, что поме­щение относится к классу "без повышенной опасности поражения электрическим током", корпуса необходимо занулить.

125. Так как работа на улице может рассматриваться как работа в особо опасном с точки зрения поражения электрическим током помещении, то напряжение питания переносного электроинструмента и светиль­ников не должно превышать 12В.

126. Для воробья, сидящего на проводе, напряжение прикосновения и шаговое напряжение суть одно и то же. Шаговое же напряжение в данном случае будет определяться только падением напряжения на омическом сопротивлении провода U = IRpL, где RP - погонное сопротивление провода, L - воробьиный шаг. Откуда, подставляя, данные из задачи, получаем U =100·0,001·0,05=0,005 [В]. Остальные данные нужны только для того, чтобы запутать картину, хотя с их мощью можно оценить ток утечки с воробья в воздух. Полагая, своим телом воробей шунтирует участок провода в 2 раза больший его шага, а ток утечки стекает с его клюва, получим, что I= U/(Rиз/2L) =1,2·105/(109/2·5·10-2)=

1,2·10-5[А] =12[мкА], что немного даже для воробья.

127. Безусловно, в этой ситуации наибольшей опасности подвергается сам "шутник", поскольку при пробое фазы на корпус транспортёра именно он оказывается под действием напряжения, близкого к фазному. Пьяный, лежащий на ленте транспортера, находится в относительной безопасности до тех пор, пока он не начнет с него слезать, так как даже если он касается металлических конструкций транспортера, напряжение прикосновения для него будет равно нулю, поскольку вся конструкция находится под одним потенциалом.

128. Цех гальванических покрытий можно смело отнести к особо опасным по поражению электрическим током помещениям, так как это особо сырое помещение и к тому же с химически активной средой.

129. Цех холодной штамповки можно отнести как к помещениям с повышенной опасностью поражения электрическим_током, так и к особо опасным, в зависимости от количества факторов повышенной опасности, которые мы сможем в нем обнаружить. По крайней мере один фактор - наличие металлических конструкций (штампов), соединенных с землей - присутствует всегда. А если в цехе еще и бетонный пол, что обычно всегда имеет место, то этого уже достаточно, чтобы отнести цех к особо опасным помещениям.

130. Контроль сопротивления заземляющих устройств осуществляют при вводе их в эксплуатацию и далее с периодичностью не реже одного раза в год в периоды наибольшего высыхания или промерзания грунта. Для контроля сопротивления заземляющих устройств применяются мегомметры типа МС-08, включаемые по схеме, представленной рис. 3(а), или амперметр, вольтметр и генератор переменного тока, включаемые по схемам, представленным на рис.3(б) (метод «амперметра-вольтметра») и рис.3(в) (метод "трех измерений"). В последнем случае сопротивление испытуемого заземлителя находят по результатам трех измерений как RX = 0,5(R1+R2-R3), где Ri, - значение сопротивлений, полученных при каждом из замеров.

Преимуществом метода амперметра-вольтметра является высо­кая точность измерений при использовании вольтметра с большим внутренним сопротивлением, а преимуществом метода трех измерений - возможность размещения вспомогательных электродов ближе 20 м от испытуемого заземлителя и возможность использования вольтметров с низким внутренним сопротивлением.

131.Сопротивление заземляющего устройства в этом случае находят как Rx=0,5(R1 + R2 - Rз) =

=0,5(10+7-5) = 6[Ом].

132. Зимой и летом удельное сопротивление грунта максимально, так как летом он высыхает, а зимой промерзает. Поэтому и сопротивление заземляющих устройств в это время года максимально. Если даже в этих условиях оно удовлетворяет требованиям безопасности, то весной и осенью эти требования будут выполнены с запасом,



в)

Рис. 3. Схемы включения приборов для контроля

сопротивления заземляющих устройств.

Rx - испытуемое заземляющее устройство;

Ry и Rz - вспомогательные электроды

133. Для того чтобы проверить сопротивление изоляции 200 м провода, надо воспользоваться мегомметром, подключив его одним выводом к началу бухты провода. Второй вывод мегомметра надо подключить к металлической емкости (ведру, тазику), в которую налит электролит (в простейшем случае слабый раствор поваренной соли или даже водопроводная вода, если ее собственное сопротивление невелико по сравнению с ожидаемым сопротивлением изоляции), и опустить бух­ту провода в электролит так, чтобы вся бухта за исключением начала и конца оказалась покрыта жидкостью. Начало, к которому подклю­чен вывод мегомметра, и конец не должны касаться электролита. Для того, чтобы найти погонное сопротивление изоляции, необходимо результат измерения умножить на длину провода, в данном случае на 200.

Рис. 4. Контроль сопротивления изоляции

с помощью трёх вольтметров

134. Для контроля сопро­тивления изоляции применя­ются мегомметры тина M1101 на напряжение 100, 500 и 1000 В. Непрерывный контроль изоляции осуществляется только в сетях с изолирован­ной нейтралью. Например, рис.4 (контроль однофазных замыканий на землю). Сопротивление изоляции силовых и осветительных сетей на участке между двумя предохранителями или разъединителями должно быть выше 500 кОм.

135. Сопротивление изоляции силовых и осветительных сетей должно быть выше 500 кОм. Следовательно, эта сеть к эксплуатации непри­годна.

136. В данной ситуации возможны два варианта:

- на корпусе машины действительно иногда возникает напряжение относительно других конструкций ванной комнаты, но ни механик, ни машина в этом не виноваты. Искать виновных надо среди потре­бителей электроэнергии этого дома. При несимметричной нагрузке фаз потенциал нулевого провода будет отличаться от нуля на вели­чину падения напряжения на его омическом сопротивлении от тока уравновешивания и может достигать ощутимых величин;

- покупательница страдает от разрядов статического электричества на зануленный корпус в момент ее прикосновения к стиральной ма­шине, а статическое электричество образуется при перемещении хо­зяйки по квартире (например, по полу, покрытому линолеумом). Так что вполне вероятно, что в данной ситуации правы оба.

137. Это, безусловно, возможно, так как сопротивление заземляющего устройства для отвода статического электричества не должно пре­вышать 100 Ом, в то время как наибольшее сопротивление заземле­ния нейтрали в сети с гдухозаземленной нейтралью не должно пре­вышать 8 Ом (в худшем случае, если напряжение сети 127 В).

138. В этом случае целесообразно увеличить проводимость воздуха за счет применения ионизаторов (радиоизотопного или коронного электрического разряда). При этом увеличится скорость стекания за­рядов с поверхности перематываемой пленки и тем самым уменьшит­ся вероятность накопления зарядов статического электричества.

139. Причина здесь кроется в опасности образования зарядов статиче­ского электричества. Поскольку полиэтилен хороший диэлектрик с высоким поверхностным сопротивлением, то при перевозке горючих жидкостей в такой таре будет происходить накопление зарядов статического электричества, при разряде которых возможно образование искр и воспламенение или взрыв паров.

140. Ответ на этот вопрос аналогичен предыдущему, поскольку всё равно, по какой причине в полиэтиленовом баке плещется горючая жидкость.

141. В данном случае металлические конструкции бака необходимо заземлить.

142. Да, можно, так как допустимое сопротивление заземляющего устройства не должно превышать 100 Ом, что в данном случае выполняется.

143. В соответствии с "Санитарно-гигиеническими нормами допустимой напряженности электростатического поля" значение напряженности поля Е на рабочих местах не должно превышать 60 кВ/м при воздействии до 1 часа, а при воздействии свыше 1 часа до 9 часов допустимое значение E определяют по формуле:

,

где t – время воздействия. При напряжённостях свыше 20 кВ/м указанные нормативы применяют, если в остальное время рабочего дня Е не превышает 20 кВ/м. Следовательно, в данном случае допустимое время воздействия не должно превышать t = (60/25)2 = 5,76 [ч].

144. Для защиты населения от воздействия ЭППЧ ЛЭП устанавливаются санитарно-защитные зоны. Границы зоны по обе стороны трассы должны составлять: 20 м от крайних фазных проводов при напряжении 330 кВ; 30 м -500 кВ; 40 м - при 750 кВ; 55 м - при 1150 кВ. Следовательно, в данном случае жилой дом оказался в пределах санитарно-защитной зоны, поэтому необходимо либо изменить трассу ЛЭП, либо перенести в другое, более безопасное место, жилой дом.

145. Туристы не знают, на какое напряжение рассчитана ЛЭП, однако, если вернуться к предыдущей задаче, то мы увидим, что они оказались в пределах санитарно-защитной зоны ЛЭП, даже если ее рабочее напряжение минимально, т.е. 330 кВ. При этом напряженность электромагнитного поля в месте установки палатки может составлять 15 - 20 кВ/м. В соответствии с ГОСТ 12.1.002-84 время пребывания чело века в. зоне действия ЭППЧ устанавливается в зависимости от значения напряженности поля. При этом постоянное присутствие персонала на рабочем месте в течение 8 часов допускается только при Е < 5 кВ/м, а при 5<E<20 кВ/м допустимое время пребывания t [ч] рассчитывается по формуле t = (50/E - 2). Следовательно, при Е =20 кВ/м допустимое время пребывания t = 0,5 ч, что несколько маловато для отдыха, да и вряд ли отдых в таких условиях можно считать полноценным. Отсюда вывод: установка палатки в таком месте недо­пустима!

146. Так как по условиям задачи требуется защита от удара молнии с надежностью более 99%, то весь склад должен располагаться в зоне типа А защиты молниеотвода, формируемой конусом высотой Н и основанием с радиусом R=0,75H, где Н - высота молниеотвода. По­скольку конус должен накрывать весь склад, то радиус его основания должен быть больше или равняться диагонали площадки, следова­тельно, R≥√(l02+202) = 22,4 м, а высота молниеотвода, который должен располагаться в углу площадки, H ≥ 22,4/0,75 =30 м.

147. Эта задача аналогична предыдущей, но поскольку требуемая на­дежность зашиты от удара молнии всего лишь 95%, то склад может располагаться в зоне типа Б, формируемой конусом высотой 0,8H и основанием с радиусом 1,5H, где H - высота молниеотвода. Так как конус должен накрывать весь склад, то диаметр его основания дол­жен быть больше или равняться диагонали площадки, следовательно, R ≥ √ (202+202) = 28,2 м, а высота молниеотвода, который должен располагаться в углу площадки, H ≥ 28,2/1,5 = 18,6м..

148. Для населенных мест в диапазоне частот до 300 МГц нормируется напряженность электрической составляющей электромагнитного по­ля [В/м], а для частот свыше 300 МГц и до 300 ГГц нормируется плотность потока электромагнитного излучения [Вт/м2].

149. При воздействии электромагнитных полей радиочастот (ЭПРЧ) на живые организмы происходит поглощение энергии излучения, характеризуемое нагревом тканей тела. Особенно опасен такой нагрев для органов со слабой терморегуляцией (мозг, хрусталик глаза). Кроме теплового воздействия наблюдается специфическое биологическое, связанное с изменением ориентации клеток и молекулярных цепей в соответствии с изменением направления силовых линий поля и приводящие к изменениям в структуре клеток крови, в эндокринной системе, к помутнению хрусталика глаза.

150. Так как работник будет подвергаться воздействию ЭПРЧ от несколь­ких источников, работающих в частотном диапазоне с единым значени­ем предельно допустимого уровня, то суммарную интенсивность воздействия вычисляют как ЭHE1+ЭНЕ2+... +ЭНЕn ≤ ЭНEП где ЭНЕ=E2Т. В нашем случае суммарная энергетическая нагрузка составит (302+332+402)∙4=14000 [(В/м)2ч], что не превышает допустимое для данно­го диапазона частот значение 20000 (В/м)2ч. Следовательно, выполнять указанные работы при включенных передатчиках допустимо.

151. Так как источники излучения работают в частотных диапазонах с разными значениями предельно допустимого уровня, то должно выполняться условие: ЭНЕ1/ ЭНЕП1 + ЭНЕ1/ЭНЕП2+….+ ЭНЕn/ЭНЕПn В данном случае имеем 302∙4/20000+42∙4/800<1. Следовательно, выполнение работ возможно.

152. Так как источники излучения работают в частотных диапазонах с разными значениями предельно допустимого уровня, то должно выполняться условие ЭНППЭ/ ЭНППЭП+ ЭНЕ/ ЭНЕП≤1. Значение ППЭПДУ при работе в течение 4 часов в поле постоянно действующего передатчика составляет ППЭПДУ = ЭНППЭп/Т = 2/4 = 0,5 [Вт/м2], откуда получаем следующее соотношение 0,4/0,5+ 42∙4/800 = 0,88. Следовательно, в данном случае выполнение работ при включенных передатчиках возможно.

153. Из соотношения ЭНППЭ/ЭНППЭП+ЭНЕ/ЭНЕП ≤1 с учётом того, что ЭНППЭ = ППЭТ и ЭНЕ = Е2Т получаем для Т выражение вида Т=1/(А+В), где А = ППЭ/ЭНППЭп, а В = Е2/ЭНЕП. В данном случае А = 0,4/2 = 0,2, В = 42/800 = 0,02 и Т=1/0,22 = 4,54 [ч].





Дата публикования: 2015-02-03; Прочитано: 870 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...