![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Теоретическая важность принципа проецирования заключается в том, что процесс проецирования устанавливает определенные соответствия между изо-бражаемыми элементами пространства и соответствующими элементами кар- тины. Рассмотрим эти соответствия и
их конструктивно-изобразительные особенности.
Представим, что центр
S перемещается по перпендикуляру к непо-движной картине П ¢ и проецирует на неё не-подвижную точку А. (рис. 6.11)
. Очевидно, что дви-
жение центра по пер-
пендикуляру к картине
вызывает движение
проекции А ¢ точки А по
прямой а ¢ как по кар-
тинному следу проеци-рующей плоскости, за-даваемой траекторией s движения центра и точкой А.
Так как положений центра S на s --¥1 и положений проекции А ¢ на а ¢ так же ¥1, то получается, что процесс про-ецирования точки А конструктивно ус-танавливает такое соответствие между ними, при котором каждому положению центра S на s соответствует единст-веное положение проекции А ¢ на а ¢ и наоборот, каждому положению проек-ции А ¢ на а ¢ соответствует единствен-ное положение S на s.
Определение 6.11. Соответст-вие между элементами двух систем, порождаемое проецированием, при ко-тором одному элементу одной систе-мы соответствует вполне опреде-лённый элемент другой системы и на-
оборот, называется в з а и м н о –
о д н о з н а ч н ы м.
Это означает, что соответственные таким образом системы как множества элементов, равномощны, а их структу-ры изоморфны.
Отличительной особенностью рас-сматриваемого соответствия является то, что бесконечно-удалённому или несобственному положению S ¥ центра S соответствует собственная проекция А ¢¥ точки А, и наоборот, собственному положению S 3 центра соответствует не-собственная проекция А 3¥. Соответст-вие несобственных элементов собст-венным делает их равноправными.
Определение 6.12. Прямые линии, к точкам которых добавлено ещё по одной несобственной точке, называ-ются п р о е к т и в н ы м и.
Проективные прямые а ¢ и s ¢ зам-
кнуты в своих несобственных точках.
Определение 6.13. Проецирова-ние неподвижных объектов простран-ства на неподвижную картину из под-вижного центра называется ц е н т -р а л ь н ы м п о д в и ж н ы м [89].
Можно сказать, что центральное подвижное проецирование, помимо вы-шерассмотренного соответствия, сопо-ставляет изображаемой точке А пря-мую а ¢ картины П ¢, а трёхпараметри-ческому множеству точек эвклидового пространства R,- однопараметрическое множество прямых типа а ¢, образующих пучок с центром в точке Р = s ´ П ¢. На каждой прямой этого пучка есть одна несобственная точка, а множество этих точек всех прямых пучка Р распола-гается на одной несобственной прямой плоскости П ¢.
Определение 6.14. Плоскость, к которой присоединена несобственная прямая как система коллинейных не-собственных точек всех её собствен-ных прямых, называется п р о е к- т и в н о й.
Подобно плоскости П ¢ каждая пло-скость пространства имеет свою несоб-
ственную прямую. Совокупность всех
несобственных точек собственных пря-мых и несобственных прямых собствен-ных плоскостей эвклидова пространст-ва образует его единственную несобст-венную плоскость.
Определение 6.15. Эвклидово про-странство, дополненное несобствен-ной плоскостью как системой компла-нарных несобственных точек и пря-
мых, называется расширенным эвкли-довым или п р о е к т и в н ы м.
Утверждение 6.6. Проективное
пространство образовано соответ-
![]() |
Рис.6.12. Коллинеарность двух
конкурентных точечных полей
![]() |
Рис.6.13. Перспективная коллинеация
двух конкурентных плоских полей
ствиями, порождаемыми централь-ным проецированием.
Так как в проективном пространстве
собственные и несобственные элемен-ты равноправны, то между ними спра-ведливы следующие связи и отноше-ния:
= две нетождественные точки всегда коллинейны, т.е., задают одну прямую;
= три неколлинейные точки все-гда компланарны, т.е., задают одну плоскость;
= две компланарные, но нетож-дественные прямые всегда конкурен-тны (или инцидентны собственной или несобственной точке);
= прямая и неинцидентная ей пло-скость всегда конкурентны (или инци-дентны собственной или несобст-венной точке);
= две нетождественные плоско-сти всегда конкурентны (или инци-дентны собственной или несобствен-ной прямой);
= три собственные плоскости, не инцидентные одной прямой, всегда ин-цидентны собственной точке.
Зрительный аппарат человека ос-нован на принципе центрального прое-цирования, который формирует визу-альное пространство зрительного вос-приятия по законам организации проек-тивного пространства, так же форми-руемого центральным проецированием.
Небесный свод и линия горизонта – это зримые несобственная плоскость и одна из несобственных прямых этого пространства. Поэтому проективное пространство является концепту-альной моделью визуального прост-ранства.
Геометрия проективного простран-ства называется п р о е к т и в н о й. Она изучает те свойства его объектов, которые сохраняются при их централь-
ном проецировании. Поэтому проекти-вная геометрия является т е о р е т и- ч е с к о й о с н о в о й геометрии кар-тинного пространства линейной перс-пективы.
Определение 6.16. Пространст-во, в котором несобственные элемен-
ты считаются несуществующими,
называется а ф ф и н н ы м.
Геометрия аффинного пространст-ва называется а ф ф и н н о й. Она
изучает те свойства его объектов, кото-рые сохраняются при их параллельном проецировании. Поэтому аффинная геометрия является т е о р е т и ч е с-
к о й о с н о в о й геометрии картин-ного пространства ортогональных про-екций и геометрии картинного прост-ранства параллельных аксонометри-ческих проекций.
Определение 6.17. Система ком-планарных точек называется т о –
ч е ч н ы м п о л е м плоскост и.
Если спроецировать из центра S точечное поле П на точечное поле П ¢, то между точками и отрезками прямых этих полей установятся следующие вза-имно-однозначные соответствия:
= точке А поля П соответствует точка А ¢ поля П ¢ и наоборот;
= отрезку ВС поля П соответствует отрезок В ¢ С ¢ поля П ¢ и наоборот;
= коллинейным точкам В, D, С поля П соответствуют коллинейные точки В ¢, D ¢, С¢ поля П ¢ и наоборот;
= точке М поля П, лежащей на ли-нии s 0 пересечения П и П ¢, соответ-ствует совпадающая с ней точка М ¢ по-ля П ¢.
Линия s 0, состоящая из двойных то-чек, является двойной прямой и назы-вается о с ь ю с о о т в е т с т в и я
[ 72].
Определение 6.18. Установленное проецированием взаимно-однозначное соответствие элементов двух плос-
ких полей, при котором точкам и пря-
мым одного поля соответствуют то-чки и прямые второго поля и колли-нейность соответственных точек со-храняется, называется к о л л и н е-
а р н ы м или к о л л и н е а ц и е й.
Если коллинеация устанавливает-ся центральным проецированием, то она называется п е р с п е к т и в н о й, а если параллельным, то – п е р с п е к- т и в н о – а ф ф и н н о й.
Устанавливая ту или иную коллине-ацию, проецирование поля П на поле П ¢ преобразовывает поле П в поле П ¢ по законам этой коллинеации.
Теорема Дезарга. Еслисоответ-ственные вершины двух треуголь-ников лежат на прямых, пересекаю-
![]() |
Рис.6.14 Перспективная коллинеация двух совмещенных плоских полей
(гомология)
![]() |
Рис.6.15. Перспективно-аффинная коллинеация двух конкурентных плоских полей
![]() |
Рис.6.16. Перспективно-аффинная коллинеация двух совмещенных
плоских полей (родственное соот-ветствие).
![]() |
Рис.6.17. Виды гомологий
щихся в одной точке, то соответ-ственные стороны этих треугольни-ков пересекаются в точках, лежащих на одной прямой.
Эта теорема вытекает из свойств коллинеарных соответствий и замеча-тельна тем, что справедлива как для конкурентных (рис.6.3, 6.5), так и для компланарных треугольников (рис.6.4,
6.6) Её справедливость не зависит от того, собственна или несобственна то-чка пересечения прямых, соединяю-щих вершины этих треугольников, рав-но также и от того, собственна или не-собственна линия пересечения плоско-стей этих треугольников.
Если теорема Дезарга справедлива для двух соответственных треугольни-ков, то она справедлива для двух лю-бых плоских фигур.
Если два коллинеарных точечных поля вращением вокруг оси соответ-ствия s 0 из конкурентного положения
перевести в компланарное, то их прост- ранственная коллинеация перейдёт (преобразуется) в коллинеацию двух совмещенных плоских полей.
Определение 6.19. Коллинеация совмещённых точечных полей назы-вается г о м о л о г и е й.
Плоские фигуры, соответственные в гомологии, называются г о м о л о –
г и ч н ы м и. При этом центр со-ответствия называется центром гомо-
логии, а ось соответствия – осью гомо-логии.
При несобственном центре ось гомо-логии называется осью родства, а го-
мологичные в этом случае фигуры –
родственными.
Гомология как взаимно-однознач-ное соответствие между элементами одной и той же плоскости, является таким преобразованием этой плоскости в себя, при котором каждая её точка преобразуется в точку, коллинейные точки преобразуются в коллинейные точки, каждая прямая – в прямую, а точки на оси гомологии преобразуются в себя.
Утверждение 6.8. Гомология зада-ётся центром, осью и парой гомоло-гичных точек или прямых, тремя пара-ми гомологичных неколлинейных то-чек или центром и двумя парами гомологичных конкурентных прямых.
Так как центр и ось могут быть соб-ственными или несобственными, а меж-ду собой располагаться по разному, возможны различные виды гомологий
(рис. 6.17).
Если гомология сохраняет паралле-льность соответственных прямых, то го-мологичные фигуры называются аф-финными или родственными. Аппара-ты таких гомологий обязательно содер-жат несобственные элементы: либо ось, либо центр, либо и то, и другое. К таким гомологиям относятся преобразования растяжения (сжатия),гомотетии (подо-бия),сдвига и параллельногопереноса.
Определение 2.20. Если две гомо-логичные фигуры конгруэнтны, т.е., могут быть совмещены вращением
вокруг центра S, то они называются
ц е н т р а л ь н о –- с и м м е т р и ч -
н ы м и. (рис. 6.18).
Определение 6.21. Если две родст -
![]() |
Рис.6.18. Центрально-симметричные
фигуры
![]() |
Рис.6.19. Осесимметричные фигуры
![]() |
Рис.6.20. Пространственно-гомологичные фигуры
(перспективный рельеф)
венные фигуры вращением вокруг оси родства приводятся в тождествен-ное расположение, то они являются с и м м е т р и ч н ы м и относи-тельно этой оси (рис.6.19).
Проецирование одной плоской фи-гуры порождает на картине одну гомо-логию. Но, как правило, изображаемый объект является системой нескольких конкурентных плоских фигур и его прое-цирование из одного центра порождает на картине систему взаимосвязанныхплоскостных гомологий. Если, проеци-
руя объект Ф из центра S на П, ¢ сопо-ставляя его точке А не точку А¢ карти-ны, а некоторую точку А ² проецирую-
щего луча SA, то произойдет простран-
ственное гомологическое преобразо-
вание объекта Ф в объект Ф ², в кото-
тором плоскость картины является
двойной плоскостью гомологии.
Полученный объект Ф ² является
перспективным рельефом объекта Ф,
так как он, занимая промежуточное по-
ложение между Ф и Ф ¢, трёхмерен как Ф и перспективен как Ф ¢ (рис.6.20).
Если рассматривать совокупность объектов Ф и Ф ²,
взаимосвязанных
проецирующими
лучами и конфи-
гурацией картин-
ных следов, как
систему, то она
оказывается той
с в я з н о й ф и-
г у р о й, ортогона-льная проекция
которой на карти-
ну является обра-
тимым комплекс-
ным комбинированным изображени-ем, предложенным проф. И.И.Котовым [ 53].
Если, в частности, при несобствен-ном центре S ¥, ортогонально сопря-женном с картиной П ¢, объекту Ф перед картиной сопоставить такой объект Ф ² за ней, что соответственные точки этих объектов удалены от картины на ра-вные расстояния, то такие объекты со-ответственны в пространственном пре-образовании з е р к а л ь н о й с и м –
м е т р и и относительно П ¢ (рис. 6.21).
Центральная или радиально-луче-
чевая, осевая и зеркальная симметрия являются фундаментальным фактором структуро - и формообразования как соответственных объектов-систем жи-вой и неживой природы, так и подав-ляющего числа искусственных и, в пер-вую очередь, архитектурных и дизай-нерских объектов.
![]() |
6.21. Зеркально-симметричные фигуры
Все виды гомологий, порождаемые коллинеациями, которые устанавли-ваются различными вариантами кон-струкции аппарата проецирования, свя-зывают соответственные в них плоские фигуры в их системы различными от-ношениями перспективной и аффин-ной гомологичности, которые допол-няют ранее рассмотренные связи и от-ношения до полного набора средств геометро-графического моделирования проектируемых архитектурных и дизай-нерских объектов как систем.
Дата публикования: 2015-01-23; Прочитано: 207 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!