![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
![]() |
Рис. 9.2. Однородная плоская стенка |
Рассмотрим однородную плоскую стенку толщиной δ (рис. 9.2). На наружных поверхностях стенки поддерживаются постоянные температуры tс1 и tс2. Коэффициент теплопроводности стенки постоянен и равен λ. При стационарном режиме () и отсутствии внутренних источников теплоты (qv =0) дифференциальное уравнение теплопроводности примет вид:
![]() | (9.16) |
При заданных условиях температура будет изменяться только в направлении, перпендикулярном плоскости стенки (ось Оx). В этом случае
![]() ![]() |
и дифференциальное уравнение теплопроводности перепишется в виде:
![]() | (9.17) |
Граничные условия первого рода запишутся следующим образом: при x=0 t=tc1; при x=δ t=tc2. Интегрируя уравнение (9.17), находим
![]() |
После второго интегрирования получаем
![]() | (9.18) |
Постоянные С1 и С2 определим из граничных условий: при x=0 t=tc1, С2=tc1; при x=δ t=tc2=С1·δ+tc1, отсюда . Подставляя значения С1 и С2 в уравнение (9.18), получим уравнение распределения температуры по толщине стенки:
![]() | (9.19) |
Для определения плотности теплового потока, проходящего через стенку в направлении оси Оx, воспользуемся законом Фурье, согласно которому .
Учитывая, что , получим
![]() | (9.20) |
Общее количество теплоты, которое передается через поверхность стенки F за время τ,
![]() | (9.21) |
Отношение называют тепловой проводимостью стенки, обратную ей величину
- термическим сопротивлением теплопроводности. Поскольку величина λ зависит от температуры, в уравнения (9.20), (9.21) необходимо подставить коэффициент теплопроводности λс, взятый при средней температуре стенки.
14. Начальные и граничные условия
Для решения дифференциальных уравнений численными методами требуются дополнительные условия. Если искомая функция (концентрация, температура и т.д.) является функцией времени u = f (t), то требуются начальные условия, характеризующие значение этой функции в момент времени, принятый за начальный:
Если искомая функция также является функцией пространственных координат u = f (t, x), то начальные условия характеризуют её распределение в пространстве в начальный момент времени:
В последнем случае помимо начальных условий, требуются ещё и граничные условия, характеризующие значение функции u на границе изучаемой системы с внешней средой для любого момента времени. Причём если искомая функция является функцией нескольких пространственных координат, то необходимо задавать граничные условия по каждой из них. Количество граничных условий по каждой пространственной координате определяется порядком старшей производной функции u по этой координате в дифференциальном уравнении. Например, для решения многомерного уравнения
требуются: начальное условие,
|
Основные понятия и определения
Тепловое излучение представляет собой процесс распространения в пространстве внутренней энергии излучающего тела путем электромагнитных волн. Возбудителями этих волн являются материальные частицы, входящие в состав вещества. Для распространения электромагнитных волн не требуется материальной среды, в вакууме они распространяются со скоростью света и характеризуются длиной волны λ или частотой колебаний ν. При температуре до 1500 0С основная часть энергии соответствует инфракрасному и частично световому излучению (λ =0,7÷50 мкм).
Следует отметить, что энергия излучения испускается не непрерывно, а в виде определенных порций — квантов. Носителями этих порций энергии являются элементарные частицы излучения — фотоны, обладающие энергией, количеством движений и электромагнитной массой. При попадании на другие тела энергия излучения частично поглощается ими, частично отражается и частично проходит сквозь тело. Процесс превращения энергии излучения во внутреннюю энергию поглощающего тела называется поглощением. Большинство твердых и жидких тел излучают энергию всех длин волн в интервале от 0 до ∞, то есть имеют сплошной спектр излучения. Газы испускают энергию только в определенных интервалах длин волн (селективный спектр излучения). Твердые тела излучают и поглощают энергию поверхностью, а газы — объемом.
Излучаемая в единицу времени энергия в узком интервале изменения длин волн (от λ до λ+dλ) называется потоком монохроматического излучения Qλ. Поток излучения, соответствующий всему спектру в пределах от 0 до ∞, называется интегральным, или полным, лучистым потоком Q (Вт). Интегральный лучистый поток, излучаемый с единицы поверхности тела по всем направлениям полусферического пространства, называется плотностью интегрального излучения (Вт/м2)
![]() | (11.1) |
Отсюда
![]() |
Если величина Е одинакова для всех элементов поверхности F, то Q=E·F.
Плотность потока монохроматического излучения носит название спектральной интенсивности излучения Jλ. Она связана с плотностью интегрального излучения уравнением:
![]() ![]() | (11.2) |
Каждое тело не только излучает, но и поглощает лучистую энергию. Из всего количества падающей на тело лучистой энергии Eпад (Qпад) часть ее Eпог (Qпог) поглощается, часть Еот (Qот) отражается и часть Eпр (Qпр) проходит сквозь тело. Следовательно,
![]() | (11.3) |
Обозначим
![]() ![]() ![]() | (11.4) |
где А — коэффициент поглощения; R — коэффициент отражения, D — коэффициент пропускания. Тогда А+R+D=1.
Если тело поглощает все падающие на него лучи, то есть A=1, R=О, D=0, оно называется абсолютно черным. Если вся падающая на тело энергия отражается, то R=1, А=О, D=0. Если при этом отражение подчиняется законам геометрической оптики, тело называется зеркальным; при диффузном отражении, когда отраженная лучистая энергия рассеивается по всем направлениям, — абсолютно белым. Если D=1, то A=0 и R=0. Такое тело пропускает все падающие на него лучи и называется абсолютно прозрачным. В природе абсолютно черных, белых и прозрачных тел не существует.
Участвующее в лучистом теплообмене тело, помимо собственного излучения Е, определяемого свойствами излучающего тела и температурой, отражает падающую на него энергию, т. е.
![]() | (11.5) |
Сумма энергии собственного и отражательного излучения составляет эффективное излучение тела
![]() | (11.6) |
При расчете лучистого теплообмена между телами большое значение имеет результирующее излучение, представляющее собой разность между лучистым потоком, получаемым телом, и лучистым потоком, который оно испускает в окружающее пространство. Для определения плотности потока результирующего излучения qр полагая коэффициент пропускания тела равным нулю составим уравнение баланса энергии, проходящей через плоскости а—а и b—b, одна из которых расположена внутри, а другая снаружи тела вблизи его поверхности (рис. 11.1). Для плоскости а—а
![]() |
Рис. 11.1. К составлению уравнения баланса энергии. |
![]() | (11.7) |
для плоскости b—b
![]() | (11.8) |
Заметим, что величина qр может быть положительной, отрицательной и равной нулю. Определим зависимость между результирующим и эффективным излучением. Из (11.8)
![]() | (11.9) |
из (11.7)
![]() | (11.10) |
Подставив выражение для Eпад в уравнение (11.9), получаем
![]() | (11.11) |
Это уравнение широко используется при расчете лучистого теплообмена между телами.
Дата публикования: 2015-02-03; Прочитано: 1625 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!