Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Мгновенное компандирование



Устройство, реализующее неравномерное квантование с использова­нием мгновенного компандирования (рис. 12.9), состоит из последова­тельно включенных сжимателя Сж, квантующего устройства КУ с равно­мерной шкалой квантования и расширитель Расш. Итак, для реализации неравномерного квантования используется уже известная нам компандерная система. Нормализованная характеристика сжатия В показана на рис. 12.10,а (кривая 1). Сигнал с выхода сжимателя подвергается рав­номерному квантованию. Кривая 1 показывает, что квантованию этого сигнала с равномерным шагом соответствует неравномерное кванто­вание ЗС с шагом н. Расширитель включается на приемной стороне цифрового тракта после ЦАП. Амплитудная характеристика расширите­ля (рис. 12.10,а, кривая 2) обратна характеристике сжимателя и расши­ритель должен скомпенсировать искажения, внесенные в сигнал сжимателем. Иными словами, коэффициенты передачи сжимателя Kсж и рас­ширителя Kрасш для любых входных уровней ЗС должны быть связаны соотношением KсжKрасш = 1. Применяемый здесь сжиматель является безынерционным устройством мгновенного действия.

Выигрыш, получаемый от использования сжимателя, т.е. увеличе­ние отношения С/Ш, тем больше, чем больше наклон начального участ­ка кривой сжатия в сравнении с прямой, проходящей под углом 45°. По­скольку кривая должна проходить через точки с координатами (0,0) и (1,1), то, очевидно, что на каком-то (начальном) участке тангенс угла наклона кривой больше 1, а на другом (конечном) – соответственно меньше единицы. Это означает, что увеличение отношения С/Ш кван­тования на некотором участке возможно только ценой уменьшения этого отношения на другом участке. Поскольку в случае деления всего диапа­зона на интервалы равной ширины отношение С/Ш квантования мало при низких уровнях сигнала и относительно велико при высоких уров­нях сигнала, то кривые сжатия В, определяющие увеличение отношения С/Ш квантования, имеют наибольшую крутизну наклона вблизи нуля. Крутизна наклона постепенно убывает по мере роста уровня сигнала, что влечет за собой уменьшение отношения С/Ш квантования для сигналов с высокими уровнями (рис. 12.10,а, кривая 1).

Выигрыш от применения компандера показан на рис. 12.10,б. По оси абсцисс отложен уровень сигнала на входе, по оси ординат – отно­шение С/Ш квантования. Прямая 7, наклоненная под углом 45° к оси абсцисс, представляет собой отношение С/Ш квантования для случая деления всего диапазона уровней на 128 интервалов постоянной шири­ны и при отсутствии компандерной системы. Кривая 2 также соответ­ствует случаю деления динамического диапазона на 128 интервалов, но с использованием компандерной системы.

Из рис. 12.10,б следует, что применение компандера дает выигрыш в отношении С/Ш для сигналов с низкими уровнями пока Nвх < Nвх1 и уменьшение этого отношения при Nвх > Nвх1. Выигрыш от компандирования (см. рис. 12.10,а) имеет место пока сигнал на входе ком­пандерной системы изменяется в пределах 0 < х < х1, изменяясь от максимума при х = 0 до нуля при х = х1, а затем принимая отрица­тельные значения, т.е. вызывая уменьшение отношения С/Ш в области, где х > х1, тем больше, чем больше х.

Определим оптимальный закон сжатия D, при котором отношение С/Ш квантования будет оставаться постоянным в наибольшем диапа­зоне изменения входных уровней. При некотором входном сигнале и uвх шаг неравномерного квантования (рис. 12.10,в)

(12.24)

Рис. 12.10. Нормализованные амплитудные характеристики сжимателя и расширителя (а); отношение С/Ш квантования в функции от уровня сигнала на входе компандерной системы: 1 – без использования компандера, 2– с использованием компандера при 128 уровнях квантования (б); к построению оптимальной характеристики компрессии (в); характеристики компрессии для разных значений коэффициента сжатия (г)

где duвых/duвх – производная характеристики компрессии. Используя выражение (12.10), для входного уровня Nвх и соответствующего ему шага квантования н, получаем

Рс/Ршкв=12(). (12.25)

Из (12.25) следует, что Рс/Ршкв будет оставаться постоянным, если шаг квантования возрастает пропорционально напряжению сигнала на вхо­де. Такая шкала квантования называется пропорциональной и для нее имеем [см. (12.24) и (12.25)]:

(12.26)

Решение полученного дифференциального уравнения дает оптимальную характеристику сжатия D вида

uвых = сln( uвх). (12.27)

где с и – постоянные интегрирования. Устройство с такой харак­теристикой физически нереализуемо, поскольку при uвых имеем uвх 0.По этой причине на практике используют два других зако­на сжатия D, несколько отличающиеся от оптимального, но достаточно близкие к нему – это законы и А.

При -законе выходное и входное напряжения сжимателя связа­ны зависимостью вида

(12.28)

где ln – значение коэффициента сжатия D в соответствии с Рекомен­дация–ми МККТТ равно 100 при цифровом представлении речевых сиг­налов телефонии и 15 при кодировании ЗС радиовещания и телевиде­ния. Форма этой характеристики для разных значений р. показана на рис. 12.10,г. Отношение максимального шага квантования к минималь­ному при использовании -характеристики будет

(12.29)

Различие между Дщож и Дтт тем больше, чем больше коэффициент сжатия . Поэтому выбор значения и оказывает большое влияние на от­ношение С/Ш квантования. Увеличение улучшает отношение Рс/Ршкв для слабых сигналов и ухудшает для сильных. Уравнение (12.28) опре­деляет характеристику сжатия Л в первом квадранте, в третьем квадран­те она строится симметрично относительно точки с координатами (0,0).

Кроме сжатия D по -закону в 3В часто применяют сжатие по А-закону вида

(12.30)

где А – число, равное 87,6 в многоканальных системах передачи. При этом сигналы, напряжение которых меньше uвх < uвхmаx /А квантуются с постоянным шагом; при uвх > uвхmаx /А сигналы квантуются нерав­номерно с шагом, изменяющимся по логарифмическому закону. При этом при А-законе характеристика отношения Рс/Ршкв оказывается бо­лее плоской, чем при -законе.

В настоящее время в системах кодирования ЗС отказываются от аналоговых компандеров, заменяя их цифровыми. В последних плав­ная характеристика сжатия D заменяется линейно-ломанной аппрокси­мирующей функцией. В зависимости от числа используемых сегментов (отрезков прямых линий) при аппроксимации и вида закона сжатия эту линейно-ломанную зависимость обозначают буквой и двумя цифрами. Например, запись А 87,6/11 означает, что используется аппроксимация по А-закону при А = 87,6 с 11-ю аппроксимирующими отрезками или сегментами (рис. 12.11,а).

 
 

Запись 15/11 означает, что используется характеристика сжатия D по -закону при = 15 с ее аппроксимацией 11-ю отрезками прямых линий (рис. 12.11,б). В пределах каждого сег­мента шаг квантования постоянен, но при переходе от одного сегмента к другому возрастает в 2 раза. Число уровней квантования в пределах каждого сегмента постоянно.

Процедура кодирования каждо­го отсчета в этом случае состоит в следующем. В начале определяется полярность сигнала и в зависимости от нее формируется символ первого разряда (0 или 1) кодового слова. Затем кодируется в двоичном коде номер сегмента, в пределах которо­го находится уровень входного сиг­нала. Для кодирования номера сег­мента нужны трехразрядные кодо­вые комбинации. Далее кодируется уровень сигнала в пределах сегмен­та. Если число таких уровней равно 64 (как при 11-сегментном кодиро­вании, показанном на рис. 12.11), то для кодирования номера уровня не­обходима шестиразрядная кодовая комбинация. Общее число разрядов в кодовом слове при этом равно 10 и структура кодового слова выглядит так: первый разряд определяет полярность сигнала, следующие три – номер сегмента и последние шесть– номер уровня в пределах сегмента.

В качестве примера на рис. 12.12 приведена зависимость отношения Рс/Ршкв от относительного изменения уровня тонального сигнала на входе (Nс–Nстаx) при отсутствии сжатия D (прямая -1), 12-сегментной аппроксимации по А-закону(кривая 2) и 11-сегментной аппроксимации по -закону (кривая 3) характеристик компрессии. При этом равномер­ное квантование здесь-14-разрядное, а неравномерное 11-разрядное.

Из рис. 12.12 видно, что для низких входных уровней приведен­ные зависимости совпадают, поскольку шаг квантования является по­стоянным и равным. Для средних и больших уровней отношение С/Ш квантования при сжатии D компрессии остается примерно постоянным (кривые 2 и 3) и достаточно высоким. Таким образом компрессия по­зволяет снизить разрядность кодового слова с 14 до 11 (14/11) и, как следствие, понизить скорость цифрового потока примерно на 20 % по сравнению со случаем равномерного квантования.

Итак, при полосе частот передаваемого ЗС, равной 15 кГц, при f д, равной 32 кГц, и т = 11 скорость цифрового потока составит 352 кбит/с для монофонической передачи и 704 кбит/с для стереофонии при ис­пользовании двух равноценных каналов. Заметим, что здесь не учтены дополнительные биты, которые обычно вводятся для обнаружения и исправления ошибок. Их наличие несколько повышает требуемую для передачи высококачественных сигналов 3В скорость цифрового потока.

Почти мгновенное компандирование. При почти мгновенном компандировании обычно используют пять различных шкал квантования с равномерным шагом внутри каждой шка­лы и изменяющимся при переходе от одной шкалы к другой (рис. 12.13). Выбор той или иной шкалы определяется значением максимального уровня сигнала за время, равное 1 мс. Минимальный шаг квантования имеет шкала 5 (диапазон 0), максимальный – шкала 1 (диапазон 4). Число шагов квантования у каждой из шкал одинаково и равно 512 для одной полярности сигнала. Поэтому кодовые слова, соответствующие каждому отсчету, содержат 10 разрядов.

Процедура кодирования состоит в следующем. Сначала ЗС коди­руется при минимально возможном шаге квантования с разрешающей способностью 14 бит/отсчет, при этом используется стандартная ИКМ с равномерной шкалой квантования и частотой дискретизации 32 кГц. Выборки из 32 отсчетов 14-разрядных слов, что соответствует длитель­ности сигнала в 1 мс, запоминаются, а затем в зависимости от наиболь­шего значения отсчета внутри каждой выборки четыре разряда из 14 отбрасываются. Для самых малых уровней (диапазон 0, см. рис. 12.13) отбрасываются четыре старших разряда. Отбрасывание одного младше­го и трех старших разрядов соответствует увеличению шага квантования в 2 раза (диапазон 1), двух младших и двух старших – в 4 раза (диа пазон 2), трех младших и одного старшего – в 8 раз (диапазон 3) и, наконец, четырех младших – в 16 раз (диапазон 4, шкала 1).

Таким образом, при почти мгновенном компандировании шаг кван­тования зависит не от мгновенного значения сигнала, а от его макси­мального значения на интервале времени, равном 1 мс.

Для правильного восстановления на приемной стороне абсолютного значения каждого отсчета каждый блок из 32 отсчетов сопровождается служебной комбинацией из 3 бит, определяющей, какая из шкал кван­тования использовалась при передаче всех отсчетов этого блока. При этом полная скорость передачи оказывается равной 323 кбит/с на мо­ноканал, а отношение сигнал/шум квантования на 3 дБ лучше, чем при 11-разрядном кодировании с мгновенным компандированием.

В заключение отметим, что в соответствии с Рекомендацией 660 МККР целесообразно использовать для первоначального представления сигналов 3В стандартную ИКМ с равномерным квантованием при раз­решающей способности 14 бит/отсчет с последующим цифровым ком­пандированием, применяя при этом преобразовании либо 11-сегментное 14/11 бит мгновенное компандирование по А-закону с характеристикой компрессора, показанной на рис. 12.11,а, либо 5-диапазонное 14/10 по­чти мгновенное компандирование с характеристикой компандирования, изображенной на рис. 12.13.

С учетом дополнительных бит, необходимых для обнаружения и исправления ошибок, могущих возникать при цифровой передаче ЗС, общая скорость цифрового потока при передаче высококачественного ЗС с полосой частот 15 кГц и частотой дискретизации 32 кГц должна составлять 384 кбит/с (моно) и 768 кбит/с (при стереопередаче, где используются два отдельных канала).

Эта скорость может быть снижена до 320 кбит/с на один высоко­качественный канал (Рекомендация 719 МККР). В этом случае ком­пандирование исходного цифрового сигнала с частотой дискретизации 32 кГц при равномерном 14-разрядном кодировании должно выполнять­ся в три этапа:

а) почти мгновенное компандирование с 5-диапазонной характе­ристикой компрессии и снижением разрядности от 14 до 10 бит (см. рис. 12.13);

6) разделение отсчетов s(n) на две последовательности – нечет­ных s(2п + 1) и четных s(2n) отсчетов и вычисление разности (2n) по формуле

(12.31)

в) дополнительное почти мгновенное компандирование разностного сигнала (2n) с 3-диапазонной характеристикой компрессии (рис. 12.14) и сни жением разрядности с 11 до 9 бит. С учетом дополнительных бит для обнаружения и исправления ошибок скорость цифрового потока в этом случае составит 320 кбит/с на один канал передачи высококаче­ственного сигнала 3В.

Возможна также цифровая пере­дача ЗС по каналам связи в соответ­ствии с Рекомендацией 718 МККР. При этом исходный цифровой сиг­нал при частоте дискретизации, рав­ной 32 кГц, и разрешающей способ­ности АЦП при равномерном кван­товании, равной 16 битам, преобра­зуется путем компандирования в 14-битовые слова методом плавающей запятой. Длина кодового блока здесь 2 мс (64 последовательных отсчета на блок), используется восемь шкал квантования, коэффициенты мас­штабирования передаются 3-битовым словом. Схема метода кодирования 16/14 с плавающей запятой изложе­на в § 12.10. С учетом дополнительных бит для защиты от ошибок, син­хронизации и передачи служебных данных полная скорость цифрового потока при передаче составляет в этом случае 496 кбит/с на моноканал. Далее будут описаны другие более совершенные методы сокращения скорости передачи цифровых сигналов 3В по каналам связи.





Дата публикования: 2015-01-23; Прочитано: 1239 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...