Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Вопрос23 Расстояние от точки до плоскости. Взаимное расположение прямой и плоскости. Взаимное расположение 2х прямых в пространстве



Вопрос 20. Матрица размеров mxn. Квадратная матрица. Частные случаи (треугольная, диагональная, скалярная, единичная матрицы). Линейные операции над матрицами (сложение и умножение на число) и их свойства. Умножение двух матриц. Свойства операции умножения матриц.

Любая прямая, перпендикулярная плоскости, называется нормалью к плоскости, а любой ненулевой вектор на такой прямой мы будем называть нормальным вектором плоскости.

Из определения видно, что нормальный вектор у фиксированной плоскости определяется не однозначно. Все нормальные векторы одной плоскости коллинеарны друг другу и поэтому получаются один из другого умножением на число, отличное от нуля.

Для того чтобы из параллельных плоскостей выбрать одну, достаточно задать точку, через которую проходит эта плоскость. Итак, если у плоскости известны нормальный вектор и точка, через которую она проходит, то плоскость определена однозначно.

Ур.плоскости через нормальный вектор

Общее уравнение плоскости

Частные случаи общего уравнения плоскости:

1) By + Cz + D = 0 - параллельна оси Ox;

2) Ax + Cz + D = 0 - параллельна оси Oy;

3) Ax + By + D = 0 - параллельна оси Oz;

4) Cz + D = 0 - параллельна оси Oxy;

5) By + D = 0 - параллельна оси Oxz;

6) Ax + D = 0 - параллельна оси Oyz;

7) Ax + By + Cz = 0 - проходит через начало координат;

8) By + Cz = 0 - проходит через ось Ox;

9) Ax + Cz = 0 - проходит через ось Oy;

10) Ax + By = 0 - проходит через ось Oz;

11) z = 0 - плоскость Oxy;

12) y = 0 - плоскость Oxz;

13) x = 0 - плоскость Oyz.

Векторное уравнение плоскости

Пусть r -- радиус-вектор текущей точки плоскости , -- радиус-вектор точки . Тогда уравнение (11.2) можно переписать в виде Такое уравнение обычно называют векторным уравнением плоскости

Взаимное расположение двух плоскостей

Если , то они:

1) пересекаются

2) параллельны (но не совпадают)

3) совпадают

Если плоскости заданы уравнениями и то случаи 1 - 3 имеют место, когда:

1)

2)

3)

Вопрос21 Уравнение плоскости, проходящей через данную точку, параллельно 2м неколлинеарным векторам. Уравнение плоскости, проходящей через 3 данные точки. Уравнение плоскости «в отрезках». Нормальное уравнение плоскости.

Уравнение плоскости по точке и двум неколлинеарным векторам

В векторном виде

В координатах

Уравнение плоскости по трем точкам

В векторном виде

В координатах

или

Уравнение плоскости в отрезках

где a, b, c - величины отрезков, отсекаемых плоскостью на осях координат.


Нормальное уравнение плоскости

где - углы, образуемые нормальным вектором плоскости с осями координат; p - расстояние от начала координат до плоскости.

Приведение общего уравнения плоскости к нормальному виду:

Здесь - нормирующий множитель плоскости, знак которого выбирается противоположным знаку D, если произвольно, если D = 0.

Вопрос22 Различные виды уравнений прямой в пространстве (параметрические, канонические, через 2 точки, общие) Направляющий вектор прямой, заданной общими уравнениями.

Уравнения прямой по двум точкам

Векторно-параметрическое уравнение прямой

где - фиксированная точка, лежащая на прямой; - направляющий вектор.

Канонические уравнения прямой

Вопрос23 Расстояние от точки до плоскости. Взаимное расположение прямой и плоскости. Взаимное расположение 2х прямых в пространстве.

Взаимное расположение прямой и плоскости

Плоскость и прямая

1) пересекаются

2) прямая лежит в плоскости

3) параллельны

Если то случаи 1 - 3 имеют место, когда:

1)

2)

3)

Расстояние от точки до плоскости

Взаимное расположение двух прямых

Если прямые заданы уравнениями и то они:

1) параллельны (но не совпадают)

2) совпадают

3) пересекаются

4) скрещиваются

Если то случаи 1 - 4 имеют место, когда ( - знак отрицания условия):

1)

2)

3)

4)





Дата публикования: 2015-02-03; Прочитано: 223 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.012 с)...