![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Вопрос 20. Матрица размеров mxn. Квадратная матрица. Частные случаи (треугольная, диагональная, скалярная, единичная матрицы). Линейные операции над матрицами (сложение и умножение на число) и их свойства. Умножение двух матриц. Свойства операции умножения матриц.
Любая прямая, перпендикулярная плоскости, называется нормалью к плоскости, а любой ненулевой вектор на такой прямой мы будем называть нормальным вектором плоскости.
Из определения видно, что нормальный вектор у фиксированной плоскости определяется не однозначно. Все нормальные векторы одной плоскости коллинеарны друг другу и поэтому получаются один из другого умножением на число, отличное от нуля.
Для того чтобы из параллельных плоскостей выбрать одну, достаточно задать точку, через которую проходит эта плоскость. Итак, если у плоскости известны нормальный вектор и точка, через которую она проходит, то плоскость определена однозначно.
Ур.плоскости через нормальный вектор
Общее уравнение плоскости
Частные случаи общего уравнения плоскости:
1) By + Cz + D = 0 - параллельна оси Ox;
2) Ax + Cz + D = 0 - параллельна оси Oy;
3) Ax + By + D = 0 - параллельна оси Oz;
4) Cz + D = 0 - параллельна оси Oxy;
5) By + D = 0 - параллельна оси Oxz;
6) Ax + D = 0 - параллельна оси Oyz;
7) Ax + By + Cz = 0 - проходит через начало координат;
8) By + Cz = 0 - проходит через ось Ox;
9) Ax + Cz = 0 - проходит через ось Oy;
10) Ax + By = 0 - проходит через ось Oz;
11) z = 0 - плоскость Oxy;
12) y = 0 - плоскость Oxz;
13) x = 0 - плоскость Oyz.
Векторное уравнение плоскости
Пусть r -- радиус-вектор текущей точки плоскости
,
-- радиус-вектор точки
. Тогда уравнение (11.2) можно переписать в виде
Такое уравнение обычно называют векторным уравнением плоскости
Взаимное расположение двух плоскостей
Если , то они:
1) пересекаются
2) параллельны (но не совпадают)
3) совпадают
Если плоскости заданы уравнениями и
то случаи 1 - 3 имеют место, когда:
1)
2)
3)
Вопрос21 Уравнение плоскости, проходящей через данную точку, параллельно 2м неколлинеарным векторам. Уравнение плоскости, проходящей через 3 данные точки. Уравнение плоскости «в отрезках». Нормальное уравнение плоскости.
Уравнение плоскости по точке и двум неколлинеарным векторам
В векторном виде
В координатах
Уравнение плоскости по трем точкам
В векторном виде
В координатах
или
Уравнение плоскости в отрезках
где a, b, c - величины отрезков, отсекаемых плоскостью на осях координат.
Нормальное уравнение плоскости
где - углы, образуемые нормальным вектором плоскости с осями координат; p - расстояние от начала координат до плоскости.
Приведение общего уравнения плоскости к нормальному виду:
Здесь - нормирующий множитель плоскости, знак которого выбирается противоположным знаку D, если
произвольно, если D = 0.
Вопрос22 Различные виды уравнений прямой в пространстве (параметрические, канонические, через 2 точки, общие) Направляющий вектор прямой, заданной общими уравнениями.
Уравнения прямой по двум точкам
Векторно-параметрическое уравнение прямой
где - фиксированная точка, лежащая на прямой;
- направляющий вектор.
Канонические уравнения прямой
Вопрос23 Расстояние от точки до плоскости. Взаимное расположение прямой и плоскости. Взаимное расположение 2х прямых в пространстве.
Взаимное расположение прямой и плоскости
Плоскость и прямая
1) пересекаются
2) прямая лежит в плоскости
3) параллельны
Если то случаи 1 - 3 имеют место, когда:
1)
2)
3)
Расстояние от точки до плоскости
Взаимное расположение двух прямых
Если прямые заданы уравнениями и
то они:
1) параллельны (но не совпадают)
2) совпадают
3) пересекаются
4) скрещиваются
Если то случаи 1 - 4 имеют место, когда (
- знак отрицания условия):
1)
2)
3)
4)
Дата публикования: 2015-02-03; Прочитано: 241 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!