Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Технико-экономическое обоснование проектных задач



Технико-экономическое обоснование (ТЭО)

Технико-экономическое обоснование (ТЭО) - это изучение экономической выгодности, анализ и расчет экономических показателей создаваемого инвестиционного проекта. Целью проекта может быть создание технического объекта или строительство или реконструкция существующего здания.
Главной задачей при составлении ТЭО является оценка затрат на инвестиционный проект и его результатов, анализ срока окупаемости проекта.

Составить ТЭО необходимо самому предпринимателю для понимания того, что стоит ли ждать от проекта, а для инвестора ТЭО предпринимателя, запрашивающего инвестиции необходимо, для понимания сроков окупаемости вложенных денег. Разработка ТЭО может может быть поручена как группе специалистов (в сложных проектах), так и может быть составлено и самостоятельно предпринимателем.
Что же является основными отличиями ТЭО от бизнес-плана?
Обычно ТЭО составляется для новых проектов на уже существующем предприятии, поэтому такие блоки, как маркетинговые исследования, анализ рынка, описание предприятия и продукта не описываются в таких ТЭО.
Но иногда возникает ситуация и дополнительно в ТЭО приводятся подробные данные об анализе технологий и оборудования и причины их выбора.
Таким образом Технико-экономическое обоснование (ТЭО) является более коротким и содержательным документом, чем полноценный бизнес-план.
В общем, в ТЭО приводится описание отрасли, в которой работает предприятие, и дается обоснование выбора территориального и географического положения действующего и предполагаемого бизнеса, а так же описывается вид выпускаемой продукции. Здесь необходимым является описание и обоснование цен на выпускаемую продукцию. При этом финансовая часть ТЭО содержит информацию об источниках финансирования и сроки погашения задолженности, условия использования заемных средств.
Расчеты в ТЭО состоят из таблиц, в которых представлено движение денежных средств и баланс.
Такая структура ТЭО может и не являться единственно правильной и может изменяться в зависимости от конкретного проекта. Так же, она может быть расширена для больших и сложных бизнес проектов. В чем отличие технико-экономического обоснования (ТЭО) от бизнес-плана?

Теоретики предлагают представления, что технико-экономическое обоснование - результат разнообразных исследований, как экономической направленности, так и маркетинговых исследований. Но при этом делается вывод о реалистичности проекта, и определяется круг экономических, организационных и других предполагаемых решений для оптимизации производственного процесса. При этом часто технико-экономическое обоснование является составной частью бизнес-плана.
При этом существует мнение, что технико-экономическое обоснование, в какой-то мере, представляет собой либо сокращенный вариант бизнес-плана, либо, напротив, это обычный бизнес-план, который назвали технико-экономическим обоснованием.
Необходимо отметить, что если порядок составления и структуры бизнес-плана четко прописаны, то при составлении ТЭО можно найти несколько различных вариантов написания, которые различаются в зависимости от рассматриваемых проблем.

Существуют следующие варианты технико-экономического обоснования на практике:

Пример №1
1. реальное состояние предприятия;
2. анализ рынка и оценка производственных мощностей предприятия;
3. техническая документация;
4. положение дел с трудовыми ресурсами;
5. организационные и накладные расходы предприятия;
6. оценка длительности проекта;
7. анализ финансовой привлекательности и экономической обоснованности проекта.

Методика составления технико-экономического обоснования (ТЭО)

1. Оглавление или структура. Краткое описание глав документа.
2. Общее описание проекта, вводные данные о проекте. Информация об исследованиях, которые были проведены предварительно, оценка необходимых инвестиций.
3. Описание рынка и производства. Оценка спроса и прогноз будущих продаж, описание мощностей предприятия.
4. Сырье и ресурсы. Расчет необходимых объемов материальных ресурсов, прогноз и описание поставок ресурсов на предприятие, анализ цен на них.
5. Выбор месторасположения предприятия (объектов предприятия). Обоснование выбора места и оценка стоимости аренды помещения или участка.
6. Проектная документация. Описание технологии производства будущих изделий, характеристики необходимого оборудования, дополнительные строения.
7. Организационная структура предприятия. Описание организации предприятия и накладные расхды.
8. Трудовые ресурсы. Оценка потребности в трудовых ресурсах с делением на категории (рабочие, служащие, топ-менеджеры, руководители и т.д). Оценка расходов на заработную плату.
9. Сроки осуществления проекта. План-график проекта, смета расходов, размеры траншей и пр.
10. Экономические расчеты. Оценка инвестиционных издержек, производственные издержки, финансовая оценка проекта.

Методы и технические средства измерения температуры. Термоэлектрические преобразователи и термометры сопротивления. Нормирующие преобразователи, барьеры искробезопасности, коммуникаторы, регистраторы.

Методы измерения температуры Температура наряду с давлением и объемом представляет собой одну из трех основных величин, характеризующих термодинамическое состояние вещества, и непосредственно связана с его внутренней энергией.Температура – латинское слово, обозначающее «смесь». При взаимодействии двух равновесных систем, имеющих разные температуры, происходит переход энергии от системы с большим энергосодержанием, пока обе системы не примут новое состояние равновесия. Общим для всех видов частиц первоначально разделенных систем является температура. Диапазон существующих температур можно разделить на ряд характерных поддиапазонов: сверхнизкие температуры (0-4.2 К), низкие (4.2 – 273 К), средние (273-1300 К), высокие (1300-5000 К) и сверхвысокие (от 5000К и выше). Широкий диапазон подлежащих измерению температур, разнообразие условий и объектов исследования обусловили многочисленность методов и средств измерений температуры. В термометрии принято классифицировать методы и средства измерений на контактные и неконтактные. Более полно раскрывает особенности отдельных методов классификация по механизму передачи энергии от объекта исследования к термопреобразователю, в соответствии, с которой методы и средства измерений можно разделить на термометрические, пирометрические и спектрометрические.Термометрические методы, как правило, являются контактными методами, при которых энергообмен между объектом исследования и термопреобразователем осуществяется главным образом путем теплопроводности (при измерении температуры твердых тел) и конвекции.Неконтактные методы измерений температуры основаны на энергообмене путем излучения между объектом исследования и измерительным преобразователем. Все тела излучают в окружающее пространство электромагнитные волны различных длин. В зависимости от вида излучения и определяемых его параметров неконтактные методы можно разделить на пирометрические, применяемые в основном для измерения температурот низких до 4000 –6000К по тепловому излучению исследуемых объектов, и спектрометрические, используемые для измерения сверх высоких температур, главным образом температуры плазмы.Единство измерений температуры базируется на температурных шкалах, эталонах единицы температуры и поверочных схемах для передачи значения единицы температуры от эталонов к образцовым и рабочим средствам измерений.Основой всех температурных измерений является термодинамическая шкала (ТТШ), не связанная с каким-либо частным термометрическим свойством вещества. Эта шкала, основанная на втором законе термодинамики, была в 1852г. разработана Кельвином.Единице термодинамической температуры (символ Т) является кельвин (К), который определяется как 1/273,16 часть термодинамической температуры тройной точки воды. Такое определение единицы температуры требует практически осуществления только одной реперной точки. Необходимая вторая точка – теоретическая – абсолютный нуль.Температуру можно также выражать в градусах Цельсия (0С) Температура Цельсия (символ t или Θ) называется разность между температурой Кельвина Т и температурой Т0 = 273,15 К (точка таяния льда), т.е. t= Т –273,15.Шкалой, практически воспроизводящей ТТШ, является Международная практическая температурная шкала 1968г. (МПТШ- 68), принятая на основе международных соглашений. Связь между теоретической ТТШ И практической МПТШ-68 осуществляется при помощи газовых термометров, для которых при идеальном газе справедливо уравнениеПрибор, измеряющий температуру, называется термометром. Существуют контактные и бесконтактные термометры.Контактный термометр приводят в контакт с исследуемым телом. При тепловом равновесии температура термометра равна температуре исследуемого тела.В контактном термометре может быть использовано любое свойство вещества или устройства, зависящее от температуры. Поскольку таких свойств очень много, разновидностей термометров тоже много.В дилатометрическом термометре используется зависимость линейных размеров тела или объема вещества от температуры. Жидкостный термометр делается в виде узкого капилляра, переходящего в нижний шарик, в котором находится основная масса жидкости. При расширении жидкость входит в капилляр, заполняя его до определенного деления. Используется разница температурных коэффициентов расширения жидкости и стекла.В жидкостных термометрах применяется ртуть или спирт. Ртуть замерзает при температуре ниже –39 0С, а стекло размягчается при 500-600 0С. Этим определяется диапазон ртутных термометров. Спиртовые термометры применяются для измерения температуры в диапазоне от –80 до + 70 0С (при t =-1140С спирт замерзает, а при высоких температурах t≈ 780С – кипит).Ртутный термометр, который используется только для измерения температуры, но для ее регулирования, называется контактным, так как в него введена тонкая контактная проволочка. При повышении температуры ртуть замыкает контакты. Положение верхнего контакта можно менять магнитом. Сила тока в термометре должна быть небольшой, а при необходимости регулирования токов большей силы используется реле.Иногда в дилатометрическом термометре используется расширение твердого стержня.Однако чаще изготавливают биметаллическую пластинку и склеивают или скрепляют две гибкие металлические пластинки с разными температурными коэффициентами расширения. При нагревании биметаллическая пластинка изгибается.В качестве термометров используют также различные физико-химические индикаторы температуры вещества, которые изменяют состояние (плавятся, кипят, изменяю цвет и т.д.) при определенных температурах. Например, такими индикаторами могут быть термочувствительные краски. В последнее время стали широко применять некоторые жидкие кристаллы – вещества, плавно меняющие свой цвет от красного до фиолетового.Датчиками температуры с электрическим выходом являются электрические термометры: термометры сопротивления и термопары.Металлический термометр сопротивления это катушка с проводом, сопротивление которого возрастает с температурой: R = R0 (1+αt). Для устойчивости к окислению берут тонкую платиновую проволоку (платиновый термометр) диаметром менее 0,1мм.Сопротивление измеряется мостом, шкала которого может быть проградуирована в градусах.Возникновение термоЭДС в термопреобразователе объясняется тем, что при его нагревании возникает поток электронов от горячего спая к холодному. На холодном спае создается отрицательный потенциал, а на горячем – положительный. Разность этих потенциалов будет определять величину термоЭДС термопреобразователя.Если температуру холодного спая поддерживать постоянной, то термоЭДС будет зависеть только от степени нагрева рабочего конца термопреобразователя, что позволяет отградуировать измерительный прибор в соответствующих единицах температуры. В случае отклонения температуры свободных концов от градуировочного значения, равного 00С, к показания вторичного прибора вводится соответствующая поправка.Температуру свободных концов учитывают для того, чтобы знать величин поправки.Поправку на температуру свободных концов в зависимости от условий вводят тремя способами: по градуировочной таблице; перестановкой стрелки выключенного прибора с нулевого положения до отметки,которая соответствует температуре свободных концов; автоматическими устройствами –при помощи компенсационных коробок или схем измерительных приборов.Величина термоЭДС в термопреобразователе зависит не только от разности температур горячего и холодных спаев, но и от материала термоэлектродов. Поэтому стремятся применять в качестве термоэлектродов те металлы и сплавы, у которых возникают сравнительно большие ЭДС.Для вывода свободных концов термопреобразователя в зону постоянной температурой служат удлинительные термоэлектродные провода.Таким образом, чтобы определить измеряемую температуру среды с помощью термоэлектрического преобразователя, необходимо выполнить следующие операции: измерить термоЭДС в цепи преобразователя; определить температуру свободных концов; в измеряемую величину термоЭДС ввести поправку на температуру свободных концов; по известной зависимости термоЭДС от температуры определить измеряемую температуру среды. В зависимости от материала термоэлектродов термопреобразователи различают: с металлическими термопарами из благородных неблагородных металлов и сплавов с термопарами из тугоплавких металлов сплавов.Термопары из благородных металлов, обладая устойчивостью к высоким температурам и агрессивным средам, а также постоянной термоЭДС, широко используют для замера высоких температур в промышленных и лабораторных условиях.Термопары из неблагородных металлов и сплавов применяют для измерения температур до 10000 0С. Достоинством этих термопар является сравнительно небольшая стоимость и способность их развивать большие термоЭДС.Градуировка термопары – определение термоЭДС термопары от температуры рабочего конца при постоянном значении температуры свободных концов (равной 0 0С).Термоэлектроды из благородных металлов изготовляют из проволоки диаметров 0,3- 0,5мм, а неблагородных –диаметром 1,2-3,2 мм.. Диаметр термоэлектродов выбирают, исходя из назначения термопары, диапазона измерения температуры и необходимой прочности Термопреобразователи сопротивления. Принцип действия термопреобразователей сопротивления (терморезисторов) основан на изменении электрического сопротивления проводников и полупроводников в зависимости от температуры. Материал, из которого изготавливается такой датчик, должен обладать высоким температурным коэффициентом сопротивления, по возможности линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств и инертностью к воздействиям окружающей среды. В наибольшей степени всем указанным свойствам удовлетворяет платина; в чуть меньшей – медь. Термоэлектрические преобразователи (термопары). Принцип действия термопар основан на термоэлектрическом эффекте, заключающемся в том, что в замкнутом контуре, состоящем из двух разнородных проводников (или полупроводников), течет ток, если места спаев проводников имеют различные температуры. Если взять замкнутый контур, состоящий из разнородных проводников (термоэлектродов), то на их спаях возникнут термоЭДС E(t) и E(t0), зависящие от температур этих спаев t и t0. Так как эти термоЭДС оказываются включенными встречно, то результирующая термоЭДС, действующая в контуре, равна E(t) – E(t0).При равенстве температур обоих спаев результирующая термоЭДС равна нулю. Спай, погружаемый в контролируемую среду, называется рабочим концом термопары, а второй спай – свободным. Термопары позволяют измерять температуру в диапазоне от –200 до 2200 0С. Для измерения температур до 1100 0С используют в основном термопары из неблагородных металлов, для измерения температур от 1100 до 1600 0С – термопары из благородных металлов и сплавов платиновой группы, а для измерения более высоких температур – термопары из жаростойких сплавов (на основе вольфрама).Наибольшее распространение для изготовления термоэлектрических преобразователей получили платина, платинородий, хромель, алюмель. Нормирующий преобразователь Нормирующий преобразователь предназначен для преобразования сигналов низкого уровня в унифицированный выходной сигнал. Барьеры искробезопасности

Помимо требований по ограничению энергии, накопляемой электрической цепью, которая зависит от величины емкости и индуктивности цепи и включенных в ее состав приборов, вид защиты «искробезопасная электрическая цепь» требует наличия специальных устройств, которые не допускают попадания высокого потенциала или прохождения высокого тока со стороны системы управления в защищенную цепь – барьеров искробезопасности. Фактически, барьеры искробезопасности являются устройствами, устанавливающимися в сигнальные цепи между системой управления и первичными преобразователями или исполнительными механизмами, защищающими цепи, расположенные во взрывоопасных зонах от возможного попадания высокого потенциала в случае неисправности системы управления или возникновение высокого тока в цепи вследствие ее короткого замыкания.

Конструктивно барьеры искробезопасности бывают двух основных типов: с использованием стабилитронов и предохранителей, а также с гальванической изоляцией.





Дата публикования: 2015-01-26; Прочитано: 664 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...