Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Р о з д і л VIII 9 страница



Горіння – це фізико-хімічний процес взаємодії горючої речовини з киснем повітря, внаслідок чого виділяється тепло і випромінюється світло. Основою процесу горіння є комплекс екзотермічних окислювально-відновлювальних реакцій горючої речовини з окислювачем. За звичайних умов горіння – це процес окислення або з’єднання горючої речовини з киснем повітря. Процес горіння потребує поєднання трьох компонентів: - речовини, що здатна горіти; - джерела запалювання, з відповідним запасом енергії; - окислювача – найбільш бурхливе горіння відбувається у чистому кисні. Горючі речовини можуть перебувати у трьох агрегатних станах: - рідкому; - твердому; - газоподібному. Якщо речовина утворила з повітрям горючу суміш, вона стає готовою до горіння і становить велику небезпеку, бо не потребує потужного й тривалого джерела вогню, а запалюється від малопотужної іскри. Важливою характеристикою горючої суміші є процентне співвідношення горючої речовини й кисню у повітрі. Горючі суміші залежно від співвідношення пального та окислювача поділяються на такі види: - бідні – мають надлишок окислювача і недостатню кількість горючої речовини; - багаті – мають надлишок горючої речовини. Залежно від швидкості хімічної реакції та утворення горючої суміші горіння має декілька видів. Класифікація видів горіння.

Залежно від швидкості хімічної реакції та утворення горючої суміші горіння може відбуватися у вигляді:
- тління – швидкість до кількох см/с;
- власного горінні – швидкість до кількох м/с;
- вибуху – швидкість кілька сотень м/с;
- детонації – швидкість до декількох тисяч м/с.
Швидкість процесу горіння залежить від кількісних і якісних показників горючої суміші та імпульсу запалювання, які в процесі горіння можуть змінюватися або залишатися постійними.
Залежно від швидкості розповсюдження полум’я горіння буває:
- дефлаграційне, що відбувається з дозвуковими швидкостями (від кількох см до декількох метрів за секунду);
- детонаційне, що має надзвукові швидкості.
Горіння буває стійким тоді, коли воно не супроводжується підвищенням тиску. Підвищення тиску призводить до вибухового горіння. Реальні вибухи носять переважно дефлаграційний характер.
У процесі горіння розповсюдження полум’я посилює стиснення газу. Стиснення відбувається у вигляді слабких ударних хвиль. Кожна ударна хвиля проходить з більшою швидкістю, ніж попередня. Перед фронтом полум’я ударні хвилі з’єднуються в одну потужну хвилю. Така ударна хвиля призводить до сильного стиснення і розігрівання газу. З підвищенням температури в ударній хвилі виникає новий стійкий режим – детонація, який характеризується різким стрибком тиску до 20-30 кПа в точці утворення ударної хвилі і надзвуковими швидкостями.

Дозвукове горіння поділяється на ламінарне та турбулентне.
Ламінарне горіння характеризується пошаровим поширенням полум’я по свіжій горючій системі, турбулентне – змішуванням шарів потоку.
Горючі системи можуть бути хімічно однорідними і неоднорідними, внаслідок чого горіння буває:
- гомогенним – це така горюча система, в якій горюча речовина рівномірно перемішана з повітрям (гази, пари, пил). Таке горіння називають ще кінетичним – це горіння заздалегідь підготовленої суміші.
- гетерогенне або дифузійне – це процес горіння, який лімітується дифузією кисню у зону полум’я, коли речовини перебувають у різних агрегатних станах (рідкі і тверді горючі речовини). Дифузія як процес протікає повільно.
Процес горіння може бути повним і неповним. При надмірній кількості кисню у повітрі горіння буде повним, при цьому утворюються продукти, які не можуть більше горіти – вуглекислий або сірчаний газ, пари води, азоту.
Неповне згорання відбувається при недостатній кількості кисню і супроводжується утворенням продуктів, які є вибухонебезпечними й токсичними – оксид вуглецю, альдегіди, пари метилового спирту, ацетону, які при зміні умов горіння можуть самі спалахувати або чинити отруйну дію на організм людини.

64. Горючість (спалимість) - це здатність речовини або матеріалу до горіння (рис. 3. 54). За показником горючості всі речовини та матеріали поділяються на негорючі, важкогорючі та горючі

Негорючі - речовини та матеріали не здатні до горіння на повітрі нормального складу Це неорганічні матеріали, метали, гіпсові конструкції

Важкогорючі - це речовини не здатні до займання в повітрі від

джерела запалювання, однак після його вилучення не здатні до самостійного горіння До них належать матеріали, які містять горючі та негорючі складові частини. Наприклад, асфальтобетон, фіброліт

Горючі - матеріали, які здатні до самозаймання, а також займання від джерела запалювання і самостійного горіння після його вилучення

До них належать всі органічні матеріали В свою чергу горючі матеріали поділяються на легкозаймисті, тобто такі, які займаються від джерела запалювання незначної енергії без попереднього нагрівання та важкозаймисті, які займаються від порівняно потужного джерела запалювання

Температура спалаху - найнижча температура горючої речовини, при якій над її поверхнею утворюються пари або гази, здатні спалахнути від джерела запалювання, але швидкість їх утворення ще недостатня для стійкого горіння За температурою спалаху розрізняють:

- легкозаймисті рідини (ЛЗР) - рідини, які мають температуру спалаху, що не перевищує 61°С у закритому тиглі (бензин, ацетон, етиловий спирт);

- горючі рідини (ГР) - рідини, які мають температуру спалаху понад 61°С. у відкритому тиглі (мінеральні мастила, мазут, формалін)

Займання - початок горіння під дією джерела запалювання Температура займання - найменша температура речовини, при якій вона виділяє горючі пари і гази з такою швидкістю, що після їх запалення виникає стійке горіння.

Температура спалахування - найнижча температура речовини, при якій вона виділяє горючі пари і гази з такою швидкістю, що після їх запалення виникає стійке горіння

Температура спалаху - найнижча температура речовини, при якій відбувається різке збільшення швидкості екзотермічних реакцій, що призводить до виникнення полум'янистого горіння Температури спалаху та спалахування належать до показників пожежовибухонебезпечності лише рідин та твердих речовин

Температура у вогнищі пожежі досягає 700-900°С. Особливістю пожеж, що розпочинаються у приміщенні з закритими дверима та вікнами, є порівняно повільний розвиток горіння протягом перших 30-40 хвилин через недостатню кількість повітря в зоні горіння

На розвиток пожежі у приміщеннях та спорудах значно впливає здатність окремих будівельних елементів чинити опір впливу теплоти, тобто їх вогнестійкість (рис 3 55)

Вогнестійкість - це здатність конструкцій, матеріалів затримувати поширення вогню, виражена в

годинах Усі будови і споруди за вогнестійкістю поділяються на 5 ступенів Ступінь вогнестійкості залежить від вогнетривкості та займистості будівельних конструкцій, а також від межі поширення вогню по цих конструкціях

У будівлях 1-го ступеню вогнестійкості всі конструктивні елементи неспалимі, з високою межею вогнестійкості (1,5-3 години)

2-го ступеню - також негорючі, але з меншою межею вогнестійкості (0,5-2,5 год.).

3-го ступеню - будови, які мають основні несучі конструкції негорючі, а ненесучі (міжповерхові й перекриття на горищі) - важкогорючі (0,25-2 год.).

4-го ступеню - будови, які мають всі конструкції важко спалимі (0,25-0,5 год)

5-го ступеню - всі конструкції горючі.

Багато неорганічних матеріалів хоч і не горять, але мають порівняно невелику термічну стійкість Наприклад, вапняки і мармур руйнуються при температурі 300-400°С, а шифер і азбоцементні вироби при температурі 300°С втрачають воду, стають крихкими, а при температурі 600°С при попаданні на них води - розтріскуються

Межа вогнестійкості - це час (у годинах) від початку вогневого стандартного випробування зразків до виникнення одного з граничних станів елементів та конструкцій (втрата несучої та теплоізолюючої спроможності, щільності)

Межа поширення вогню - максимальний розмір пошкоджень, см, яким вважається обвуглення або вигорання матеріалу, що визначається візуально, а також оплавлюванням термопластичних матеріалів

65. З метою одержання початкових даних для розробки заходів щодо забезпечення пожежної та вибухової безпеки, при визначенні категорії та класу приміщень і будівель відповідно до вимог норм технологічного.проектування, стандартів ССБП, будівельних норм і правил, правил будови електроустановок встановлена номенклатура показників пожежо-вибухонебезпечності речовин і матеріалів.

У ГОСТІ 12.1.044-89 "Пожаро-взрывоопасность веществ и материалов. Номенклатура показателей и методы их определения" наведено 20 показників, перелік яких при необхідності може бути розширений. Вибір показників для характеристики пожежо-вибухонебезпечності тих чи інших речовин і матеріалів залежить від агрегатного стану речовини (матеріалу) та умов її застосування. Деякі найважливіші з них та їх застосування для характеристики речовин у різних агрегатних станах наведені в табл. 5.1.

Таблиця 5.1. Показники пожежо-вибухонебезпечності речовин і матеріалів

Показники Агрегатний стан речовин і матеріалів
Гази Рідини Тверді Пил
1. Горючість + + + +
2. Температура спалаху - + - -
3. Температура спалахування - + + +
4. Температура самоспалахування + + + +
5. Концентраційні межі поширення полум'я(спалахування) + + - +
6. Температурні межі поширення полум'я(спалахування) - + - -
7. Температурні умови теплового самозаймання - - + +
8. Здатність вибухати та горіти при взаємодіїз водою, киснем повітря та іншими речовинами + + + +

Примітка: Знак "+" означає застосування, а знак "-" - незастосування показника.

Горючість є кваліфікаційною характеристикою здатності речовин і матеріалів до горіння і застосовується для таких потреб: кваліфікації речовин і матеріалів за горючістю; визначення категорії і класу приміщень за вибухо-пожежною та пожежною небезпечністю; при розробці заходів щодо забезпечення пожежної безпеки.

За горючістю речовини і матеріали поділяють на негорючі, важкогорючі та горючі.

Негорючі - це речовини і матеріали, які не здатні горіти у повітрі. Проте серед них можуть бути пожежонебезпечні, наприклад, окислювачі і речовини, що виділяють горючі продукти при взаємодії з водою, киснем або з іншими речовинами. До негорючих речовин належать усі мінеральні та більшість штучних неорганічних матеріалів.

Важкогорючі - речовини і матеріали, що здатні горіти в повітрі при дії джерела запалювання, але не здатні самостійно горіти після його вилучення. Це можуть бути композиції, що складаються з органічного матеріалу і мінерального наповнювача.

Горючі - речовини і матеріали, що здатні займатися при дії джерела запалювання і самостійно горіти після його вилучення.

Температура спалаху - це найменша температура конденсованої речовини, при якій в умовах спеціальних випробувань над її поверхнею утворюються пари, що здатні спалахувати від джерела запалювання, але швидкість їх утворення при цьому недостатня для стійкого горіння.

Температура спалаху характеризує умови, за яких речовина стає пожежонебезпечною. Цей показник застосовується при класифікації рідин за ступенем пожежної небезпечності, при визначенні категорії та класифікації приміщень і зон за пожежовибуховою небезпечністю, а також при розробці заходів пожежо-вибухобезпеки.

Температура спалахування - це найменша температура речовини, при якій в умовах спеціальних випробувань речовина виділяє горючі пари і гази з такою швидкістю, що при дії на них джерела запалювання спостерігається займання (тобто виникає стійке полум'яне горіння).

Температура спалахування характеризує здатність речовин до самостійного горіння і завжди буває вищою за температуру спалаху. Чим меншою є різниця між температурами спалаху і спалахування речовини, тим більше пожежонебезпечною є ця речовина.

Температура спалахування застосовується при встановленні групи горючості речовин, при оцінці пожежної небезпечності обладнання і технологічних процесів, при розробці заходів щодо забезпечення пожежо-вибухобезпеки.

Температура самоспалахування — це найменша температура навколишнього середовища, при якій в умовах спеціальних випробувань спостерігається самозаймання речовини. Температура самоспалахування використовується для оцінки пожежо-вибухонебезпечності речовин; визначення групи вибухонебезпечної суміші для вибору типу вибухобезпечного обладнання; при розробці заходів щодо забезпечення пожежо-вибухобезпеки технологічних процесів.

Концентраційні межі поширення полум'я. Нижня (верхня) концентраційна межа поширення полум'я - це мінімальний (максимальний) вміст горючої речовини в однорідній суміші в окислювальному середовищі, при якому можливе поширення полум'я по суміші на будь-яку відстань від джерела запалювання.

Концентраційні межі поширення полум'я застосовують при визначенні категорії та класу приміщень за пожежо-вибухонебезпечністю; при розрахунках вибухобезпечних концентрацій газів, парів і пилу всередині технологічного обладнання, а також у повітрі робочої зони з потенційними джерелами запалювання; при проектуванні вентиляційних систем; при розробці заходів з забезпечення пожежної безпеки.

Температурні межі поширення полум'я. Відомо, що концентрація насичених парів рідини перебуває у певному взаємозв'язку з її температурою. Використовуючи цю властивість, можна концентраційні межі насичених парів виражати через температуру рідини, при якій утворюються ці пари. Такі температури мають назву температурних меж поширення полум'я.

Температурні межі поширення полум'я - це такі температури речовини, при яких її насичена пара утворює в окислювальному середовищі концентрації, що дорівнюють, відповідно, нижній (нижня температурна межа) і верхній (верхня температурна межа) концентраційним межам поширення полум'я.

Температурні межі спалахування застосовуються при розрахунку пожежо-вибухонебезпечних температурних режимів роботи технологічного обладнання; оцінці аварійних ситуацій, пов'язаних з розлиттям горючих рідин; розрахунку концентраційних меж спалахування; а також для характеристики пожежної небезпечності рідин.

Температурні умови теплового самозаймання це залежність між температурою навколишнього середовища, кількістю речовини (матеріалу) і часом до її самозаймання.

Мінімальну температуру середовища, при якій можливе самозаймання матеріалу, враховують при виборі безпечних умов зберігання та переробки самозаймистих речовин.

Вдатність вибухати та горіти при взаємодії з водою, киснем повітря та іншими речовинами (тобто при взаємному контакті речовин) - якісний показник, що характеризує особливу пожежну небезпечність речовин.

Дані про небезпечність взаємного контакту речовин наводять у стандартах і технічних умовах на речовину; їх використовують при категоріюванні приміщень за пожежо-вибухонебезпечністю; при виборі безпечних умов проведення технологічних процесів та умов спільного зберігання і транспортування речовин і матеріалів.

66.

Особливості горіння різних речовин та матеріалів і вибір показників, що характеризують їх пожежну й вибухову небезпеку, багато в чому зумовлюються їх агрегатним станом. Ступінь пожежної небезпечності горючих рідин залежить від групи горючості, температур спалаху, спалахування, самоспалахування, концентраційних та температурних меж поширення полум'я. Нижня температурна межа (HTM) поширення полум'я (спалахування) рідини дорівнює її температурі спалаху, яка прийнята за основу класифікації рідин за ступенем їх пожежної небезпечності. Рідини, що мають температуру спалаху до 61'С, належать до легкозаймистих (ЛЗР), а з температурою спалаху вище 61ºС - до горючих (ГР). Усі легкозаймисті рідини є вибухонебезпечними. Найбільш пожежонебезпечними вважаються рідини, що мають температуру спалаху нижче 15°С та велику зону спалахування. Наприклад, температура спалаху сірковуглецю становить - 50°С, зона його спалахування - від 1 до 50%. Високою пожежонебезпечністю характеризуються також ЛЗР, у яких температура спалахування лише на кілька градусів перевищує температуру спалаху. Вибухонебезпечні газо- та пароповітряні суміші. Особлива пожежонебезпечність горючих газів та парів ЛЗР зумовлена їх здатністю утворювати з повітрям вибухонебезпечні суміші. Відповідно до правил будови електроустановок (ПББ), правил виготовлення вибухозахисного та рудникового електрообладнання (ПВВРБ) вибухонебезпечними вважаються суміші з повітрям горючих газів і парів ЛЗР, що мають температуру спалаху 45°С та нижче, а також суміші горючих пилу та волокон з повітрям, які мають нижню межу спалахування не вище 65 г/м3. В основу класифікації вибухонебезпечних сумішей покладена їх здатність передавати за певних умов вибух через фланцеві зазори ("щілинний захист") в оболонці електроустаткування. За довжиною критичного зазору, при якій із оболонки об'ємом 2,5 л частота передавання вибуху становить 50% від загальної кількості вибухів, встановлені 4 категорії вибухонебезпечних сумішей (табл. 5.2). Небезпечність суміші зростає від категорії І до категорії ІІС. Залежно від температури самоспалахування вибухонебезпечні суміші поділяють на шість груп (табл. 5.3). Здатність суміші передавати вибух через щілинний захист і температуру самоспалахування використовують для отримання початкових даних при виборі вибухозахисного електроустаткування. Про здатність до займання газоповітряних сумішей судять також за концентраційними межами спалахування. Вибухонебезпечні властивості сумішей парів з повітрям не відрізняються від властивостей сумішей горючих газів з повітрям. Для перших у разі насичених сумішей можна концентраційні межі спалахування насичених парів виражати через температуру рідини, при якій вони утворюються (температурні межі спалахування). Таблиця 5.2. Класифікація вибухонебезпечних сумішей залежно від довжини зазору між плоскими поверхнями фланців оболонки (ГОСТ 12.1.011-78*)
Категорія вибухонебезпечної суміші І ІІА ІІB ІІС
Довжина зазору, мм Понад 1,0 Понад 0,9...1,0 0,5...0,9 Менше за 0,5

Таблиця 5.3.

Класифікація газо- та пароповітряних сумішей залежно від температури самоспалахування (ГОСТ 12.1.011-78*)

Група вибухонебезпечної суміші Т1 Т2 Т3 Т4 Т5 Т6
Температура самоспалахування, °С Понад 450 Понад 300…450 Понад 200…300 Понад 135…200 Понад 100…135 Понад 85…100

Для попередження вибухів газоповітряних сумішей при транспортуванні, зберіганні та застосуванні деяких газів необхідно враховувати їх несумісність внаслідок бурхливого взаємореагування. Наприклад, несумісними з хлором є водень, окис азоту, етилен, вуглеводні, оксид вуглецю; з аміаком - усі галогени, галогеноводні, окисли хлору, із сірководнем - окис сірки.

Пожежо- та вибухонебезпечний пил. Пил може бути у двох станах: завислий у повітрі (аерозоль) та такий, що осів на різних поверхнях (аерогель). Пожежо- та вибухонебезпечні властивості пилу оцінюють, головним чином, за температурою його самоспалахування і та нижніми концентраційними межами спалахування НКМС. Верхні межі спалахування аерозолів настільки великі, що практично недосяжні. Так, верхня концентраційна межа спалахування цукрового пилу дорівнює 13 500 г/м3.

Температура самоспалахування аерогелю є значно нижчою, ніж аерозолю, оскільки висока концентрація горючої речовини в аерогелі сприяє акумулюванню тепла, а наявність відстані між порошинками в аерозолях збільшує тепловіддачу, тому швидкість тепловиділення в останніх може перевищувати швидкість їх тепловіддачі тільки при дуже високій температурі.

Вибухонебезпечність пилу багато в чому залежить від його дисперсності. Чим вища дисперсність пилу, тим більша його поверхня контакту з повітрям і тим вища небезпека вибуху. Наявність великої поверхні пилу зумовлює його високі адсорбційні можливості. Наприклад, 50 см3 сажі можуть вміщувати 950 см3 адсорбованого повітря. Маючи велику поверхню, пил здатний нагромаджувати заряди статичної електрики. Так, при транспортуванні вугільного пилу трубопроводами зі швидкістю 2,25 м/с значення електричного потенціалу сягає 7500 В. При розряді такої потужності можуть утворюватися іскри, що здатні викликати займання пилоповітряної суміші.

За пожежонебезпечністю пил залежно від його властивостей поділяють на дві групи та чотири класи (табл. 5.4).

Таблиця 6.4. Класифікація пожежо- та вибухонебезпечного пилу

Група, критерій Клас, критерій Приклади
А. Вибухонебезпечний,НКМС ≤ 65 г/м8 І. Найбільш вибухонебезпечний, НКМС ≤ 15 г/м3 Порох, цукровий пил, нафталін, сірка
II. Вибухонебезпечний, НКМС > 15...65 г/м3 Порошок алюмінію, пил борошна, пил сланцю
Б. Пожежонебезпечний,НКМС > 65 г/м3 III. Найбільш пожежонебезпечний, tсс ≤ 250°С Пил тютюновий, пил елеваторний
IV. Пожежонебезпечний, tсс > 250'С Пил деревний, вугільний, віскозний

Примітка: tсс - температура самоспалахування.

До групи А належить вибухонебезпечний пил у стані аерозолю з нижньою концентраційною межею поширення полум'я (НКМ) не більше 65 г/м3. У тому числі пил, що має НКМ до 15 г/м3, належить до класу І - найбільш вибухонебезпечний, решта - до класу II - вибухонебезпечний.

До групи Б належить пил, що є пожежонебезпечним у стані аерогелю й який має НКМ, вищу за 65 г/м3. У тому числі пил, температура самоспалахування якого не перевищує 250°С, належить до класу Ш - найбільш пожежонебезпечний, а пил, що самоспалахує при температурі, вищій за 250°С, - до класу IV - пожежонебезпечний.

Для локалізації вибухів пилоповітряних сумішей рекомендується застосовувати: у вентиляційних системах — гравійні фільтри та перекривальні клапани; в електроустаткуванні — щілинний захист; у приміщеннях — регулярне вологе прибирання.

Пожежну небезпечність твердих горючих речовин і матеріалів характеризують їх схильністю до займання, а також особливостями або характером горіння. Характеристиками пожежної небезпечності твердих горючих речовин і матеріалів є група горючості, температури спалахування та самоспалахування. За горючістю ці речовини поділяються на горючі та важкогорючі. Температура спалахування лежить у інтервалі 50...580ºС (мінімальна - у камфори, максимальна - у ксилоліту). Температура самоспалахування становить від 30...670ºС (найменша - у білого фосфору, найбільша - у магнію).

Різні за хімічним складом матеріали та речовини горять неоднаково. Прості речовини (сажа, вугілля, кокс, антрацит, що є хімічно чистим вуглецем) розжарюються або жевріють без іскор, полум'я і диму.

Горіння складних за хімічним складом твердих горючих речовин може протікати по-різному. Речовини, що здатні при нагріванні плавитися (пластмаси, каучук, жири та ін.), горять з утворенням розріджених смол і доволі часто утворюють токсичні продукти горіння: оксид вуглецю, хлористий водень, аміак, синильну кислоту, фосген та ін. Речовини, що здатні при нагріванні розкладатися, перетворюються на пари та гази (деревина, бавовна, целулоїд та ін.), які згоряють. Таким чином, складні речовини самі не горять, а горять продукти їх розкладу.

67. Деякі речовини за певних умов мають здатність до самозаймання - без нагріву їх зовнішнім джерелом до tC3auM. Виділяють три види самозаймання:
- теплове;
- хімічне;
- мікробіологічне.
Суть теплового самозаймання полягає у тому, що схильні до такого самозаймання речовини при їх нагріві до порівняно незначних температур (60...80 °С), за рахунок інтенсифікації процесів окислення і недостатнього тепловідводу, саморозігріваються, що, в свою чергу, призводить до підвищення інтенсивності окислення і, врешті, до самозаймання.
До хімічного самозаймання схильні речовини, до складу яких входять неорганічні (ненасичені) вуглеводні, які включають тільки вуглець і водень, за наявності подвійних і потрійних зв'язків між атомами вуглецю.
Для таких вуглеводнів характерним є приєднання по лінії цих зв'язків окисників, у тому числі і галогенів, що супроводжується підвищенням температури речовини і інтенсивності її подальшого окиснення. За певних умов цей процес може завершуватись самозайманням. Хімічному самозайманню сприяє наявність у речовині сполук сірки.
Вугільний пил, з підвищеним вмістом сполук сірки, і тканини, просочені нафтопродуктами, до складу яких входять сполуки сірки, особливо небезпечні для самозаймання.

До мікробіологічного самозаймання схильні продукти рослинного походження - трава, подрібнена деревина, зерно тощо. За певних умов вологості і температури в рослинних продуктах виникає павутинний глет - специфічний ниткопавутиноподібний білий грибок. Його життєдіяльність пов'язана із підвищенням температури. При температурі 80...90 °С павутинний глет перетворюється в тонкопористий, схильний до подальшого самоокислення з підвищенням температури самозаймання.
Необхідною умовою для розглянутих видів самозагоряння є наявність схильних до самозаймання речовин, окислювача і недостатній відвід супутнього процесам окислення тепла в навколишнє середовище.

68. Система попередження пожеж об'єднується загальним поняттям — пожежна профілактика.

Пожежна профілактика — це комплекс організаційних заходів та технічних засобів, спрямованих на запобігання можливого виникнення пожежі чи зменшення її негативних наслідків і створення умов для пожежогасіння.

Пожежна профілактика передбачає оцінку пожежної і вибухово-виробничої небезпеки та здійснення різних способів і засобів захисту:

  • технологічних (автоматичне блокування, сигналізація і ін.);
  • будівельних (димовидалення, легкорозбірні конструкції, шляхи евакуації, брандмауери і ін.);
  • організаційних (створення пожежно-рятувальних частин, газорятувальних служб і ін.).

Система попередження пожеж має забезпечувати необхідний рівень безпеки працюючих і матеріальних цінностей. Її призначення полягає у тому, щоб:

  • унеможливити виникнення пожеж;
  • у разі виникнення пожежі гарантувати максимальну безпеку людей;
  • забезпечувати одночасну пожежну безпеку як для працюючих, так і для матеріальних цінностей;
  • попереджувати та не допускати негативного впливу на працюючих небезпечних чинників пожежі.

Об'єкти, на яких пожежі можуть призвести до ураження працюючих унаслідок впливу небезпечних чинників, пов'язаних з пожежею, повинні розробляти чітку систему заходів попередження пожеж.

69. Пожежа — це неконтрольоване горіння поза спеціальним вогнищем, що розповсюджується в часі і просторі та створює загрозу життю і здоров'ю людей, навколишньому середовищу, призводить до матеріальних збитків.

Пожежна небезпека — можливість виникнення та (або) розвитку пожежі в будь-якій речовині, процесі, стані. Слід зазначити, що пожеж безпечних не буває. Якщо вони і не створюють прямої загрози життю та здоров'ю людини (наприклад, лісові пожежі), то завдають збитків довкіллю, призводять до значних матеріальних втрат. Коли людина перебуває в зоні впливу пожежі, то вона може потрапити під дію наступних небезпечних та шкідливих факторів: токсичні продукти згорання; вогонь; підвищена температура середовища; дим; недостатність кисню; руйнування будівельних конструкцій; вибухи, витікання небезпечних речовин, що відбуваються внаслідок пожежі; паніка.

Токсичні продукти згорання становлять найбільшу загрозу для життя людини, особливо при пожежах в будівлях. Адже в сучасних виробничих, побутових та адміністративних приміщеннях знаходиться значна кількість синтетичних матеріалів, що є основними джерелами токсичних продуктів згорання. Так при горінні пінополіуретану та капрону утворюється ціанистий водень (синильна кислота), при горінні вініпласту — хлористий водень та оксид вуглецю, при горінні лінолеуму — сірководень та сірчистий газ і т. д. Найчастіше при пожежах відзначається високий вміст в повітрі оксиду вуглецю. Так, в підвалах, шахтах, тунелях, складах його вміст може становити від 0,15 до 1,5%, а в приміщеннях — 0,1—0,6%. Слід зазначити, що оксид вуглецю — це отруйний газ і вдихання повітря, в якому його вміст становить 0,4% —смертельне.





Дата публикования: 2015-01-15; Прочитано: 694 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.015 с)...