![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
|
1.Имеются две урны, в первой из которых лежит 2 + N белых и 1 + N черных шаров, а во второй находятся 3 + N белых и 2 + N черных. Из первой урны один случайно выбранный шар переложили во вторую урну. После этого шары во второй урне перемешали и из нее стали по одному вынимать шары без возвращения.
Б1) Какова вероятность того, что первый вынутый из второй урны шар – черный?
Б2) Какова вероятность того, что и первый и второй вынутые из второй урны шары – черные?
Б3) Какова вероятность того, что переложенный шар – черный, если известно что и первый и второй шары, вынутые из второй урны – черные?
2.Дискретная случайная величина
имеет таблицу распределения
| k | -2 | -1 | |||
P( = k)
|
|
| ? |
|
|
А1) Чему равна P (
= 0).
А2) Найти P (
> 0).
А3) Найти P (
< 2).
А4) Найти P (
<
> 0).
А5) Найти P (
>
< 2).
А6) Найти M
и D
.
А7) Пусть
=(N +9)
+ 4.Найти M
и D
.
А8) Пусть
=
. Найти M
и D
.
3. Вариант 1. Случайная величина
имеет равномерное распределение в области

Найти
плотность распределения, совместную функцию распределения.
Вариант 2. Случайная величина
имеет равномерное распределение в области

Найти
плотность распределения, совместную функцию распределения.
Вариант 3. Случайная величина
имеет равномерное распределение в области

Найти
плотность распределения, совместную функцию распределения.
Вариант 4. Случайная величина
имеет равномерное распределение в области

Найти
плотность распределения, совместную функцию распределения.
Вариант 5. Случайная величина
имеет равномерное распределение в области

Найти
плотность распределения, совместную функцию распределения.
Вариант 6. Случайная величина
имеет равномерное распределение в области

Найти
плотность распределения, совместную функцию распределения.
Вариант 7. Случайная величина
имеет равномерное распределение в области

Найти
плотность распределения, совместную функцию распределения.
Вариант 8. Случайная величина
имеет равномерное распределение в области

Найти
плотность распределения, совместную функцию распределения.
Вариант 9. Случайная величина
имеет равномерное распределение в области

Найти
плотность распределения, совместную функцию распределения.
Вариант 10. Случайная величина
имеет равномерное распределение в области

Найти
плотность распределения, совместную функцию распределения.
Вариант№1
Плотность двумерного нормального распределения имеет вид:
e x p 
1. Вычислить вектор мат. Ожиданий и ковариационные характеристики данного случайного вектора.
Вариант№2
Плотность двумерного нормального распределения имеет вид:
e x p 
1. Вычислить вектор мат. Ожиданий и ковариационные характеристики данного случайного вектора.
Вариант№3
Плотность двумерного нормального распределения имеет вид:
e x p 
1. Вычислить вектор мат. Ожиданий и ковариационные характеристики данного случайного вектора.
Вариант№4
Плотность двумерного нормального распределения имеет вид:
e x p 
1. Вычислить вектор мат. Ожиданий и ковариационные характеристики данного случайного вектора.
Вариант№5
Плотность двумерного нормального распределения имеет вид:
e x p 
1. Вычислить вектор мат. Ожиданий и ковариационные характеристики данного случайного вектора.
Вариант№6
Плотность двумерного нормального распределения имеет вид:
e x p 
1. Вычислить вектор мат. Ожиданий и ковариационные характеристики данного случайного вектора.
Вариант№7
Плотность двумерного нормального распределения имеет вид:
e x p 
1. Вычислить вектор мат. Ожиданий и ковариационные характеристики данного случайного вектора.
Вариант№8
Плотность двумерного нормального распределения имеет вид:
e x p 
1. Вычислить вектор мат. Ожиданий и ковариационные характеристики данного случайного вектора.
Вариант№9
Плотность двумерного нормального распределения имеет вид:
e x p 
1. Вычислить вектор мат. Ожиданий и ковариационные характеристики данного случайного вектора.
Вариант№10
Плотность двумерного нормального распределения имеет вид:
e x p 
1. Вычислить вектор мат. Ожиданий и ковариационные характеристики данного случайного вектора.
Дата публикования: 2014-12-10; Прочитано: 562 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!
