Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Решение невырожденных систем. Формулы Крамера



Данный метод также применим только в случае систем линейных уравнений, где число переменных совпадает с числом уравнений. Кроме того, необходимо ввести ограничения на коэффициенты системы. Необходимо, чтобы все уравнения были линейно независимы, т.е. ни одно уравнение не являлось бы линейной комбинацией остальных.

Для этого необходимо, чтобы определитель матрицы системы не равнялся 0.

det A ¹ 0;

Действительно, если какое- либо уравнение системы есть линейная комбинация остальных, то если к элементам какой- либо строки прибавить элементы другой, умноженные на какое- либо число, с помощью линейных преобразований можно получить нулевую строку. Определитель в этом случае будет равен нулю.

Теорема. (Правило Крамера):

Теорема. Система из n уравнений с n неизвестными

в случае, если определитель матрицы системы не равен нулю, имеет единственное решение и это решение находится по формулам:

xi = Di/D, где

D = det A, а Di – определитель матрицы, получаемой из матрицы системы заменой столбца i столбцом свободных членов bi.

Di =

Пример.

A = ; D1= ; D2= ; D3= ;

x1 = D1/detA; x2 = D2/detA; x3 = D3/detA;

Пример. Найти решение системы уравнений:

D = = 5(4 – 9) + (2 – 12) – (3 – 8) = -25 – 10 + 5 = -30;

D1 = = (28 – 48) – (42 – 32) = -20 – 10 = -30.

x1 = D1/D = 1;

D2 = = 5(28 – 48) – (16 – 56) = -100 + 40 = -60.

x2 = D2/D = 2;

D3 = = 5(32 – 42) + (16 – 56) = -50 – 40 = -90.

x3 = D3/D = 3.

Если система однородна, т.е. bi = 0, то при D¹0 система имеет единственное нулевое решение x1 = x2 = … = xn = 0.

При D = 0 система имеет бесконечное множество решений.

Метод последовательного исключения неизвестных.

В отличие от матричного метода и метода Крамера, данный метод может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. Суть метода заключается в последовательном исключении неизвестных.

Рассмотрим систему линейных уравнений:

Разделим обе части 1–го уравнения на a11 ¹ 0, затем:

1) умножим на а21 и вычтем из второго уравнения

2) умножим на а31 и вычтем из третьего уравнения

и т.д.

Получим:

, где d1j = a1j/a11, j = 2, 3, …, n+1.

dij = aij – ai1d1j i = 2, 3, …, n; j = 2, 3, …, n+1.

Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.

Пример. Решить систему линейных уравнений методом исключения неизвестных.

Составим расширенную матрицу системы.

А* =

Таким образом, исходная система может быть представлена в виде:

, откуда получаем: x3 = 2; x2 = 5; x1 = 1.

Пример. Решить систему линейных уравнений.

Составим расширенную матрицу системы.

Таким образом, исходная система может быть представлена в виде:

, откуда получаем: z = 3; y = 2; x = 1.

Полученный ответ совпадает с ответом, полученным для данной системы методом Крамера.

Для самостоятельного решения:

Ответ: {1, 2, 3, 4}.

Заключение

Рассмотренные в лекции алгоритмы исследования и решения систем линейных алгебраических уравнений с любым числом неизвестных и любым числом уравнений допускают реализацию этих методов на ЭВМ. Современные математические пакеты MATHCAD, MAPLE дают эффективные методы решения систем линейных уравнений.

Ст. преподаватель Дубенкова С.И.


Метод Крамера.

где

Δ= det A = , Di =

Метод последовательного исключения неизвестных.

Разделим обе части 1–го уравнения на a 11 ¹ 0, затем:

1) умножим на а 21 и вычтем из второго уравнения

2) умножим на а 31 и вычтем из третьего уравнения.

где

d1j = a1j / a11, j = 2, 3, …, n+1.

dij = aij – ai1d1j i = 2, 3, …, n; j = 2, 3, …, n+1.

Далее повторяем эти же действия для второго уравнения системы, потом – для третьего и т.д.





Дата публикования: 2014-12-10; Прочитано: 928 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.009 с)...