Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

А)Квадратная матрица и ее определитель. б)Особенная и неособенная квадратные матрицы. в)Присоединенная матрица. г)Матрица, обратная данной, и алгоритм ее вычисления



а) Если кол-во строк= кол-ву столбцов, то такая матрица наз квадратной размером m×m(матрица порядка m). Понятие определитель приминяется только для квадратных матриц, detA,(А),∆. Определителем кв матрицы А наз число, кот вычисляется по след правилам: 1) А=(а11) detA=а11. 2) А=(а11а12) detA=а11а2212а21.

21а22)

3) А=(а11а12а13)

21а22а23)

31а32а33)

Для 3) правилом ∆(Саррюса). detA=а11а22а3313а21а3231а12а2331а22а1311а32а2333а21а12.

4) Определитель п -го порядка – сумме произведения элементов какой-либо строки или столбца на их алгебраические дополнения. ∆=аi1Ai1+ai2Ai2+…+ainAin. –разложение по строке. ∆=aijA1j+a2jA2j+…+anjAnj- разложение по столбцу.Аij=(-1)i+jMij- алгеброическое дополнение.

в,г) Пусть матрица А- кв. Матрица А-1-наз обратной к матрице А, если выполняется усл: А-1А=АА-1=Е. Мариица наз невыражденной, если ее определитель не =0, в противнос случае матрица- выражденная. Теорема(необходимое и достаточное усл сущ обратной матрицы): Обратная матрица А-1сущ единственно тогда и только тогда, когда исходная матрица невыражденная и вычисляется по формуле А-1= 1/ detA×А~, А~-присоединенная матрица сост из алгебраических дополнений транспонированной матрицы

А~= (А11А21…А п 112А22…А п 2/…/А1 п А2п…Апп). Схема вычисления обр матрицы:

1) вычисляем определитель матрицы. Если определитель равен нулю, то матрица вырожденная и обратной матрицы не сущ. Если detA не=0, то: 2) вычисляем алгебраические дополнения и составляем присоединенную матрицу А~. 3) Составляем обратную матрицу по формуле: А-1= 1/ detA×А~. 4) Выполняем проверку: А-1А=Е.





Дата публикования: 2014-12-10; Прочитано: 438 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...