Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Графические характеристики насосов



Центробежный насос является устройством, которое преобразует энергию привода в кинетическую энергию жидкости путем ее ускорения к наружному ободу рабочего колеса - импеллера. Суть здесь состоит в том, что создаваемая энергия является кинетической. Количество энергии, передаваемое жидкости, соответствует скорости на кромке лопасти импеллера. Чем быстрее вращение импеллера или чем больше его размер, тем выше скорость жидкости на кромке лопасти и тем выше энергия, передаваемая жидкости. Образование сопротивления потоку регулирует кинетическую энергию жидкости на выходе импеллера. Первоначальное сопротивление создается спиральной камерой насоса (корпусом), в которую жидкость попадает и замедляется. Когда жидкость замедляется в корпусе насоса, часть кинетической энергии переходит в энергию давления. Именно сопротивление подаче насоса регистрируется на манометре, установленном на нагнетательном трубопроводе. Насос создает поток, а не давление. Давление является показателем сопротивления потоку.

Центробежные насосы

Насосы обычно подразделяют на два основных типа: объемные и центробежные.
Объемные насосы приводят жидкость в движение за счет изменения объема камеры с жидкостью механическими средствами. Объемные насосы представляют собой нагрузку с постоянным моментом на валу, тогда как конструкция центробежных насосов предполагает переменный момент, зависящий от скорости.
Центробежные насосы передают импульс жидкости за счет вращения рабочего колеса, погруженного в нее. Импульс приводит к росту давления или подачи на выходе насоса. В данной статье рассматриваются только центробежные насосы.

Центробежный насос является устройством, которое преобразует энергию привода в кинетическую энергию жидкости путем ее ускорения к наружному ободу рабочего колеса - импеллера. Суть здесь состоит в том, что создаваемая энергия является кинетической. Количество энергии, передаваемое жидкости, соответствует скорости на кромке лопасти импеллера. Чем быстрее вращение импеллера или чем больше его размер, тем выше скорость жидкости на кромке лопасти и тем выше энергия, передаваемая жидкости. Образование сопротивления потоку регулирует кинетическую энергию жидкости на выходе импеллера. Первоначальное сопротивление создается спиральной камерой насоса (корпусом), в которую жидкость попадает и замедляется. Когда жидкость замедляется в корпусе насоса, часть кинетической энергии переходит в энергию давления. Именно сопротивление подаче насоса регистрируется на манометре, установленном на нагнетательном трубопроводе. Насос создает поток, а не давление. Давление является показателем сопротивления потоку.

10-11.Напор - Сопротивление потоку

Пример:
Представьте трубу, струя воды из которой направлена строго вверх, в воздух. Напором будет высота, на которую поднимется вода.

ДЛЯ НЬЮТОНОВСКИХ (ИСТИННЫХ) жидкостей (такие невязкие жидкости как вода и бензин) мы используем термин напор для измерения кинетической энергии, создаваемой насосом. Напором является высота водяного столба, которую насос может создать за счет кинетической энергии, которая передается жидкости. Главная причина использования напора вместо давления для измерения энергии центробежного насоса заключается в том, что давление на выходе насоса при изменении веса жидкости меняется, а напор нет.

Поэтому с использованием термина напор мы можем всегда указать производительность насоса по любой ньютоновской жидкости, тяжелой (серная кислота) или легкой (бензин). Помните, что напор связан со скоростью, которую приобретает жидкость при прохождении через насос. Все виды энергии, имеющиеся в системе потока жидкости, можно охарактеризовать с помощью высоты водяного столба. Сумма разных напоров составляет общий напор системы или работу, которую насос будет выполнять в данной системе. Выделяются следующие виды напоров:

Термины, связанные с насосами

ВЫСОТА ВСАСЫВАНИЯ существует, когда питающий резервуар находится ниже осевой линии насоса. Таким образом, геометрическая высота всасывания является вертикальным расстоянием от осевой линии насоса до свободного уровня жидкости, предназначенной для перекачки.

ПОДПОР возникает, когда питающий резервуар (высота всасывания) находится выше осевой линии насоса. Таким образом, геометрический подпор является вертикальным расстоянием от осевой линии насоса до свободного уровня жидкости, предназначенной для перекачки.

ГЕОМЕТРИЧЕСКИЙ ГИДРОСТАТИЧЕСКИЙ НАПОР является вертикальным расстоянием между осевой линией насоса и точкой свободного истечения или поверхностью жидкости в приемном резервуаре.

ПОЛНЫЙ ГИДРОСТАТИЧЕСКИЙ НАПОР является вертикальным расстоянием между свободным уровнем в питающем резервуаре и точкой свободного истечения или поверхностью перекаченной жидкости (в приемном резервуаре).

ПОТЕРИ НА ТРЕНИЕ (hf) - потери на преодоление сопротивления потоку, которое возникает в трубопроводе и патрубках. Сопротивление зависит от размера, состояния и типа трубопровода, количества и типа патрубков, скорости потока и типа жидкости.

СКОРОСТНОЙ НАПОР (hv) - это напор, образующийся в результате движения жидкости со скоростью V. Скоростной напор можно вычислить по следующей формуле:
hv = v2 / 2g, где: g = 9,8 м/с, V = скорость жидкости, м/с
Скоростной напор обычно незначителен, и его можно игнорировать в большинстве высоконапорных систем. Однако он может сыграть серьезную роль в низконапорных системах, и его необходимо учитывать.

НАПОР ДАВЛЕНИЯ необходимо учитывать, когда насосная система начинается или заканчивается в резервуаре, имеющем неатмосферное давление. Вакуум в питающем резервуаре или положительное давление в приемном резервуаре необходимо добавить к напору системы, тогда как положительное давление в питающем резервуаре или вакуум в приемном резервуаре необходимо вычесть. Вышеперечисленные виды напоров, а именно гидростатический напор, потери напора при трении, скоростной напор и напор давления вместе образуют напор системы при определенной скорости потока.

ВАКУУМЕТРИЧЕСКАЯ ВЫСОТА ВСАСЫВАНИЯ (hs) является геометрической высотой всасывания с учетом потерь и скоростного напора. Вакуумметрическая высота всасывания определяется по показаниям прибора на всасывающем фланце. Если допустимая вакуумметрическая высота превышена, то в насосе возникает кавитация.

ГИДРОДИНАМИЧЕСКИЙ НАПОР НА ВЫХОДЕ (hd) - это геометрический гидростатический напор, плюс скоростной напор на выпускном фланце насоса, плюс общие потери напора на трение в нагнетательном трубопроводе. Общий гидродинамический напор на выходе (определяется при испытании насоса) является показанием измерительного прибора на выпускном фланце.

ПОЛНЫЙ ГИДРОДИНАМИЧЕСКИЙ НАПОР (TDH) - это гидродинамический напор на выходе с учетом вакуумметрической высоты всасывания:
TDH = hd + hs (при подъеме жидкости на высоту всасывания)
TDH = hd - hs (при наличии подпора)

МОЩНОСТЬ Работа, совершаемая насосом, является функцией полного напора и веса закачиваемой жидкости за определенное время. В формулах обычно используют объемную подачу насоса и удельный вес жидкости, а не реальный вес перекачиваемой жидкости.

Графические характеристики насосов

Почти все, о чем мы говорили выше, изображено на графических характеристиках (Рис.1) взятых из каталога. Мы не будем конкретно привязываться к типу оборудования и фирме производителю насосов. Нас больше интересует сам принцип подбора центробежного насоса. На графике (Поз. 1) изображена рабочая характеристика насоса, выражающая зависимость между расходом и напором насоса. На оси абсцисс располагается производительность (расход) насоса, выраженная в (м3/час) и (л/сек). По оси ординат располагается напор насоса, выраженный в метрах (м). Как видно из графика при «нулевом» расходе насос выдает максимальный напор равный примерно 57 метров. При максимальном расходе примерно 8 м3/час, насос создает напор примерно 19 метров. Это крайние рабочие точки по расходу и напору для данного, конкретного типа насоса. Теоретически рабочая точка может располагаться в любом месте рабочей характеристики насоса. За пределами рабочей характеристики эксплуатировать любой насос категорически запрещено.

На графике (Поз. 2) находится графическая зависимость КПД от производительности насоса. На оси абсцисс располагается производительность (расход) насоса, выраженные в (м3/час) и (л/сек). На оси ординат располагается КПД насоса, выраженный в процентах (%). Как видно из графика КПД равняется нулю при нулевом расходе. Насос работает, но расхода нет, и никакая полезная работа при этом не выполняется. Зеленым прямоугольником (Поз. 4) выделена примерная оптимальная рабочая область с оптимальным КПД насоса. Максимальный КПЛ в нашем случае будет при расходе примерно 3,5 м3/час и напоре примерно 43 м. (данная рабочая точка обозначена синей линией).

На графике (Поз. 3) изображена графическая зависимость высоты водяного столба жидкости NPSH от производительности насоса. На оси абсцисс располагается производительность (расход) насоса, выраженные в (м3/час) и (л/сек). На оси ординат находится высота подпора водяного столба, выраженная в метрах (м). Из графика видно, что чем больше расход насоса, тем больше должна быть высота подпора. При максимальном КПД насоса подпор на входе в насос должно составлять примерно 1,5 м.

И в заключение можно отметить следующее. Для долгой и надежной эксплуатации насосного оборудования необходимо выбрать правильное и оптимальное соотношение между расходом, напором, КПД и NPSH насоса, а в конечном итоге и с его ценой. Ведь для покрытия потребностей в воде можно выбрать насос с большим запасом по мощности или менее мощный, но более эффективный. В первом случае придется тратить денег больше два раза. Первый раз при покупке, более мощный насос стоит дороже, и второй раз во время эксплуатации оборудования платить больше за перерасход электроэнергии. И если покупка оборудования – это одноразовая трата денежных средств, то эксплуатация оборудования – это трата постоянная





Дата публикования: 2014-12-10; Прочитано: 684 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.008 с)...