![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Ключевые понятия: производная функции в точке; геометрический смысл производной, уравнение касательной, уравнение нормали к кривой; физический смысл производной; формулы и правила дифференцирования.
Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.
у
f(x)
f(x0 +Dx) P
Df
f(x0) M
a b Dx
0 x0 x0 + Dx x
Пусть f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции.
,
где a - угол наклона касательной к графику функции f(x) в точке (x0, f(x0)).
Угол между кривыми может быть определен как угол между касательными, проведенными к этим кривым в какой- либо точке.
Уравнение касательной к кривой:
Уравнение нормали к кривой: .
Фактически производная функции показывает как бы скорость изменения функции, как изменяется функция при изменении переменной.
Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения.
Соответственно, вторая производная функции- скорость изменения скорости, т.е. ускорение.
Теорема. (Необходимое условие существования производной) Если функция f(x) имеет производную в точке х0, то она непрерывна в этой точке.
Это условие не является достаточным.
Основные правила дифференцирования
Обозначим f(x) = u, g(x) = v - функции, дифференцируемые в точке х.
1) (u ± v)¢ = u¢ ± v¢
2) (u×v)¢ = u×v¢ + u¢×v
3) , если v ¹ 0
Эти правила могут быть легко доказаны на основе теорем о пределах.
Производные основных элементарных функций
С¢=0;
(xm)¢ = mxm-1;
Вопросы для самоконтроля:
1. Сформулируйте определение производной. В чем заключается ее геометрический и физический смысл.
2. Запишите основные правила дифференцирования.
3. Составьте таблицу производных основных элементарных функций.
Дата публикования: 2014-12-08; Прочитано: 265 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!