Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Анатомия. История анатомии



В ответ на раздражение рецептора нервная ткань приходит в состояние возбуждения, которое представляет собой нервный процесс, вызывающий или усиливающий деятельность органа. В основе возбуждения лежит изменение концентрации анионов и катионов по обе стороны мембраны отростков нервной клетки, что приводит к изменению электрического потенциала на мембране клетки.

В двухнейронной рефлекторной дуге (первый нейрон - клетка спинно-мозгового ганглия, второй нейрон - двигательный нейрон [мотонейрон] переднего рога спинного мозга) дендрит клетки спинно-мозгового ганглия имеет значительную длину, он следует на периферию в составе чувствительных волокон нервных стволов. Заканчивается дендрит особым приспособлением для восприятия раздражения - рецептором.

Возбуждение от рецептора по нервному волокну центростремительно (центрипетально) передается в спинно-мозговой ганглий. Аксон нейрона спинномозгового ганглия входит в состав заднего (чувствительного) корешка; это волокно доходит до мотонейрона переднего рога и с помощью синапса, в котором передача сигнала происходит при помощи химического вещества - медиатора, устанавливает контакт с телом мотонейрона или с одним из ее дендритов. Аксон этого мотонейрона входит в состав переднего (двигательного) корешка, по которому центробежно (центрифугально) сигнал поступает к исполнительному органу, где соответствующий двигательный нерв заканчивается двигательной бляшкой в мышце. В результате происходит сокращение мышцы.

Возбуждение проводится по нервным волокнам со скоростью от 0,5 до 100 м/с, изолированно и не переходит с одного волокна на другое, чему препятствуют оболочки, покрывающие нервные волокна.

Процесс торможения противоположен возбуждению: он прекращает деятельность, ослабляет или препятствует ее возникновению. Возбуждение в одних центрах нервной системы сопровождается торможением в других: нервные импульсы, поступающие в центральную нервную систему, могут задерживать те или иные рефлексы.

Оба процесса - возбуждение и торможение - взаимосвязаны, что обеспечивает согласованную деятельность органов и всего организма в целом. Например, во время ходьбы чередуется сокращение мышц сгибателей и разгибателей: при возбуждении центра сгибания импульсы следуют к мышцам-сгибателям, одновременно с этим центр разгибания тормозится и не посылает импульсы к мышцам-разгибателям, вследствие чего последние расслабляются, и наоборот.

Взаимосвязь, определяющая процессы возбуждения и торможения, т.е. саморегуляции функций организма, осуществляется при помощи прямых и обратных связей между центральной нервной системой и исполнительным органом. Обратная связь ("обратная афферентация" по П.К.Анохину), т.е. связь между исполнительным органом и центральной нервной системой, подразумевает передачу сигналов с рабочего органа в центральную нервную систему о результатах его работы в каждый данный момент.

Согласно обратной афферентации, после получения исполнительным органом эфферентного импульса и выполнения рабочего эффекта, исполнительный орган сигнализирует центральной нервной системе о выполнении приказа на периферии.

Так, при взятии рукой предмета глаза непрерывно измеряют расстояние между рукой и целью и свою информацию посылают в виде афферентных сигналов в мозг. В мозгу происходит замыкание на эфферентные нейроны, которые передают двигательные импульсы в мышцы руки, производящие необходимые для взятия ею предмета действия. Мышцы одновременно воздействуют на находящиеся в них рецепторы, беспрерывно посылающие мозгу чувствительные сигналы, информирующие о положении руки в каждый данный момент. Такая двусторонняя сигнализация по цепям рефлексов продолжается до тех пор, пока расстояние между кистью руки и предметом не будет равно нулю, т.е. пока рука не возьмет предмет. Следовательно, все время совершается самопроверка работы органа, возможная благодаря механизму "обратной афферентации", который имеет характер замкнутого круга.

Существование такой замкнутой кольцевой, или круговой, цепи рефлексов центральной нервной системы и обеспечивает все сложнейшие коррекции протекающих в организме процессов при любых изменениях внутренних и внешних условий (В.Д. Моисеев, 1960). Без механизмов обратной связи живые организмы не смогли бы разумно приспособиться к окружающей среде.

Следовательно, вместо прежнего представления о том, что в основе строения и функции нервной системы лежит разомкнутая рефлекторная дуга, теория информации и обратной связи ("обратной афферентации") дает новое представление о замкнутой кольцевой цепи рефлексов, о круговой системе эфферентно-афферентной сигнализации. Не разомкнутая дуга, а сомкнутый круг - таково новейшее представление о строении и функции нервной системы.

36. Особенности проведения нервных импульсов через синап­сы (одностороннее проведение, замедление, суммация, транс­формация ритма и др.).

Одностороннее проведение. В отличие от нервного волокна, способного проводить возбуждение в обоих направлениях, в центральном синапсе оно распространяется только в одном: от рецептора через вставочные нейроны в эффектора.
Это обусловлено тем, что медиатор, уволенный пресинаптическим окончанием,. поступает в синаптическую щель, действует на рецепторы постсинаптической мембраны, вызывая там ВПСП, а затем ПД в постсинаптической структуре, т.е. синапс работает как клапан.
Замедленное проведения возбуждения. В синапсах ЦНС возбуждение проводится медленнее, чем в нервных волокнах. Это объясняется особенностями синаптической передачи (так называемая синаптическая задержка), а именно диффузией медиатора к постсинаптической мембраны, возникновением ВПСП, нарастанием его до критической величины, генерацией ПД. Точные измерения позволили установить, что для проведения возбуждения через один синапс нужно 2-3 мс. Исходя из этого, можно определить количество синапсов в нейронной сетке, через которые проходит импульс в ЦНС.
Трансформация ритма возбуждения. Способность нервных центров изменять (перерабатывать) ритм импульсов, поступающих к ним, называется трансформацией ритма. Чаще трансформация ритма проявляется в том, что в ответ на одиночный стимул раздражение нервные центры направляют в исполнительного органа
(Эффектора) целый ряд импульсов, поступающих друг за другом с определенной частотой. Этим объясняется возникновение тетанического сокращения скелетной мышцы в ответ на одиночную стимуляцию соответствующего афферентного нерва. Образно говоря, в ответ на одиночный выстрел центр отвечает пулеметной очередью. В основе этого явления лежат главным образом следовые колебания мембранного потенциала, особенно продолжительность следовой отрицательный потенциал. Если следовой отрицательный потенциал, который сопровождает ПД, большой, он может достичь критического уровня деполяризации мембраны и обусловить появление второго импульса. В ряде случаев трансформация вызывается увеличением продолжительности ВПСП, и после окончания первого ПД развиваются следующие.
Суммация возбуждений. Во суммации возбуждений на теле нейрона понимают суммации ЗПСГИ как местного потенциала. Добавление - процесс составления двух или более одинаковых реакций, в результате которого результирующая реакция будет больше по своей величине, чем каждая из ее составляющих.
Интенсивность суммации ВПСП на теле нейрона определяет, будет ли этот нейрон возбужденным, или облегченным (облегчение-длительное повышение возбудимости нейрона в корковом веществе большого мозга), а также частоту разрядов возбужденного нейрона. Частота разрядов нейрона, т.е. частота ПД в серии, которую генерирует нейрон, является важнейшей его функциональной характеристикой. Она позволяет судить об интенсивности возбуждения конкретного нейрона. Чем больше частота разрядов, тем сильнее возбужден нейрон.
Различают временную и пространственную суммация возбуждений. Если ВПСП быстрее (с интервалом около 15 мс) поступают один за одним аксоном, то они добавляются в нейроне, достигая наконец порогового уровня деполяризации, необходимого для генерации ПД. Такая суммация называется временной или последовательной. Если отдельно раздражать каждый из двух аксонов, то возникают только пороговые ВПСП. Одновременное раздражение обоих аксонов приводит суммации этих ВПСП и появление полноценного ПД, способного к распространению. Это явление называют пространственной суммации.
Однако афферентные пути, которые подходят к нейрону, является не только возбуждающими, но и тормозными. Гмпульсы, поступающих этими путями, на теле нейрона превращаются в тормозные постсинаптические потенциалы (ГГ1СП), которые сумуюгься как друг к другу, так и ВПСП (алгебраическая действие). Таким образом, в процессе жизнедеятельности на теле каждого центрального нейрона всегда одновременно осуществляется добавление ВПСП (добавление возбуждений) и ГПСП (добавление торможение). Состояние нейрона, независимо от того, будет он заторможенным или возбужденным (и насколько), всегда определяется суммирование не только ВПСП, а ВПСП и ТПСП.

37. Процессы торможения в центральной нервной системе. Тор­мозные нервные клетки. Их роль в координации мышц-антагонистов, в избирательном приеме афферентной импульсации.

Интегративная и координационная деятельность центральных нервных образований осуществляется при обязательном участии тормозных процессов.

Торможение в центральной нервной системе — активный процесс, проявляющийся внешне в подавлении или в ослаблении процесса возбуждения и характеризующийся определенной интен­сивностью и длительностью.

Торможение в норме неразрывно связано с возбуждением, яв­ляется его производным, сопутствует возбудительному процессу, ограничивая и препятствуя чрезмерному распространению послед­него. При этом торможение часто ограничивает возбуждение и вместе с ним формирует сложную мозаику активированных и за­торможенных зон в центральных нервных структурах. Формирую­щий эффект тормозного процесса развивается в пространстве и во времени. Торможение — врожденный процесс, постоянно совершен­ствующийся в течение индивидуальной жизни организма.

При значительной силе фактора, вызвавшего торможение, оно может распространяться на значительное пространство, вовлекая в тормозной процесс большие популяции нервных клеток.

История развития учения о тормозных процессах в центральной нервной системе начинается с открытия И. М. Сеченовым эффекта центрального торможения (химическое раздражение зрительных бугров тормозит простые спинномозговые безусловные реакции). Вначале предположение о существовании специфических тормозных нейронов, обладающих способностью оказывать тормозные влияния на другие нейроны, с которыми имеются синаптические контакты, диктовалось логической необходимостью для объяснения сложных форм координационной деятельности центральных нервных образо­ваний. Впоследствии это предположение нашло прямое эксперимен­тальное подтверждение (Экклс, Реншоу), когда было показано су­ществование специальных вставочных нейронов, имеющих синап­тические контакты с двигательными нейронами. Активация этих вставочных нейронов закономерно приводила к торможению двига­тельных нейронов. В зависимости от нейронного механизма, способа вызывания тормозного процесса в ЦНС различают несколько видов торможения: постсинаптическое, пресинаптическое, пессимальное.

Постсиналтическое торможение — основной вид торможения, развивающийся в постсинаптической мембране аксосоматических и аксодендритических синапсов под влиянием активации тормозных нейронов, в концевых разветвлениях аксонных отростков которых освобождается и поступает в синаптическую щель тормозной меди­атор. Тормозной эффект таких нейронов обусловливается специфи­ческой природой медиатора — химического переносчика сигнала с одной клетки на другую. Наиболее распространенным тормозным медиатором является гамма-аминомасляная кислота (ГАМК). Хи­мическое действие ГАМК вызывает в постсинаптической мембране эффект гиперполяризации в виде тормозных постсинаптических по­тенциалов (ТПСП), пространственно-временная суммация которых повышает уровень мембранного потенциала (гиперполяризация), приводит к урежению или полному прекращению генерации рас­пространяющихся ПД.

Возвратным торможением называется угнетение (подавление) активности нейрона, вызываемое возвратной коллатералью аксона нервной клетки. Так, мотонейрон переднего рога спинного мозга прежде чем покинуть спинной мозг дает боковую (возвратную) ветвь, которая возвращается назад и заканчивается на тормозных нейронах (клетки Реншоу). Аксон последней заканчивается на мо­тонейронах, оказывая на них тормозное действие.

Пресинаптическое торможение развертывается в аксоаксональных синапсах, блокируя распространение возбуждения по аксону. Пресинаптическое торможение часто выявляется в структурах моз­гового ствола, в спинном мозге

Пессимальное торможение представляет собой вид торможения центральных нейронов. Оно наступает при высокой частоте раздра­жения. В первый момент возникает высокая частота ответного воз­буждения. Через некоторое время стимулируемый центральный ней­рон, работая в таком режиме, переходит в состояние торможения.

38. Функции спинного и продолговатого мозга. Их роль в ре­гуляции тонуса мышц и элементарных двигательных реф­лексов.

У спинного мозга есть две главные функции. Во-первых, он служит двусторонней проводящей системой между головным мозгом и периферической нервной системой. Это достигается с помощью чувствительных и двигательных нейронов, чьи волокна вытягиваются длинными пучками из частей головного мозга. Они тянутся на разные расстояния вдоль спинного мозга и на концах, наиболее удаленных от головного мозга, вступают в контакт с волокнами или узлами чувствительных и двигательных нейронов, принадлежащих к периферической нервной системе. Сигналы передаются через синапсы между периферическими нервными клетками и нейронами спинного мозга.
Вторая функция спинного мозга — контроль над простой рефлекторной деятельностью. Он осуществляется нейронами, чьи волокна тянутся на небольшое расстояние вверх и вниз по спинному мозгу, и интернейронами, которые транслируют импульсы непосредственно между чувствительными и двигательными нейронами.

Основными функциями продолговатого мозга являются проводниковая, рефлекторная и ассоциативная. Первая осуществляется проводящими путями, проходящими через него. Вторая, нервными центрами. В ромбовидной ямке продолговатого мозга находятся ядра 10, 11, 12 пар черепно-мозговых нервов, а также ретикулярная формация. Рефлекторные функции делятся на соматические и вегетативные. Соматическими являются статистические рефлексы продолговатого мозга, относящиеся к позно-тоническим или рефлексам позы. Эти рефлексы осуществляются ядром Дейтерса из группы вестибулярных ядер. От него к мотонейронам разгибателей спинного мозга идут нисходящие вестибулоспинальные тракты. Рефлексы возникают тогда, когда возбуждаются вестибулярные рецепторы или проприорецепторы мышц шеи. Коррекция положения тела происходит за счет изменения тонуса мышц. Например, при запрокидывании головы животного назад повышаемся тонус разгибателей передних конечностей и снижается тонус разгибателей задних. При наклоне головы вперед возникает обратная реакция. При повороте головы в сторону, повышается тонус разгибателей конечности на этой стороне и сгибателей противоположной конечности. В продолговатом мозге находятся жизненно важные центры. К ним относятся дыхательный, сосудодвигательный центры и центр регуляции сердечной деятельности. Первый обеспечивает смену фаз дыхания, второй - тонус периферических сосудов, третий регуляцию частоты и силы сердечных сокращений. В области ядер блуждающего нерва находятся центры слюноотделения, секреции желудочных, кишечных желез, поджелудочной железы и печени. Здесь же расположены центры регуляции моторики пищеварительного канала. Важной функцией продолговатого мозга является формирование защитных рефлексов. В нем находятся рвотный центр, центры кашля, чихания, смыкания век и слезотечения при раздражении роговицы. Здесь расположены бульбарные отделы центров, участвующих в организации пищевых рефлексов - сосания, жевания, глотания. В продолговатом мозге происходит первичный анализ ряда сенсорных сигналов. В частности, в нем расположены ядра слухового нерва, верхнее вестибулярное ядро, а к ядрам языкоглоточного нерва поступают сигналы от вкусовых рецепторов. От рецепторов кожи лица они идут к ядрам тройничного нерва.

Тонус исследуют после поперечной перерезки спинного мозга. Сразу после перерезки в эксперименте или после травматического повреждения его у человека наблюдаются мышечная атония и отсутствие рефлексов (спинальный шок). Главная причина спинального шока - выключение влияния на спинной мозг вышележащих отделов ЦНС (повторная перерезка спинного мозга ниже первой после исчезновения шока повторно шок не вызывает). Спинальный шок у лягушек длится несколько минут, у собак - несколько дней, у человека - около 2 мес. После исчезновения спинального шока тонус мышц, иннервируемых посредством сегментов спинного мозга, которые находятся ниже перерезки (повреждения), резко повышается. Сгибательные и разгибательные рефлексы нижних конечностей у человека в случае повреждения спинного мозга усиливаются. Механизм повышения тонуса мышц нижних конечностей в случае повреждения спинного мозга (после окончания спинального шока) отражает рис. 5.8.

Гипертонус имеет рефлекторную природу - он развивается вследствие афферентной импульсации от мышечных рецепторов. Деафферентация, например, нижней конечности у лягушки ведет к исчезновению тонуса у нее (опыт Бронжеста).

Афферентную импульсацию от мышечных рецепторов по задним корешкам спинного мозга, которая ведет к возбуждению α-мотонейронов спинного мозга и сокращению скелетных мышц, обеспечивают три фактора:

• растяжение и возбуждение мышечных рецепторов под влиянием сил гравитации конечности;

• спонтанная активность мышечных рецепторов;

• спонтанная активность γ-мотонейронов, которая реализуется следующим образом. Возбуждение γ-мотонейронов вызывает возбуждение и сокращение иннервируемых ими интрафузальных мышечных волокон, в результате чего увеличивается натяжение мышечного рецептора, поскольку концы его зафиксированы на скелетной мышце. Вследствие натяжения мышечного веретена раздражаются и возбуждаются его афферентные окончания (проприорецепторы), импульсы от которых поступают к α-мотонейронам, возбуждая их. В свою очередь α-мотонейроны посылают импульсы к скелетной мышце и вызывают ее постоянное (тоническое) сокращение.

Мы рассмотрели рефлекторную и проводниковую функции изолированного спинного мозга. В нормальных условиях деятельность спинного мозга контролируется вышележащими отделами ЦНС посредством импульсации ко всем его нервным элементам.

Двигательные системы продолговатого мозга и моста. Из перечисленных ядер продолговатый мозг включает ядра IX-XII пар черепных нервов, а также образования ретикулярной формации. Мост представлен ядрами V-VIII пар черепных нервов, а также ретикулярной формацией. В стволе мозга проходят восходящие и нисходящие нервные пути. Важную роль в регуляции тонуса мышц туловища и конечностей играют вестибулярные ядра, основным из которых является ядро Дейтерса.

1. Рефлексы, дуги которых замыкаются в продолговатом мозге и мосту, можно объединить в три основные группы:

• жизненно важные вегетативные: дыхания, сердечно-сосудистой системы, пищеварительной системы, глотания;

• защитные рефлексы: чиханья, кашля, мигания, слезоотделения, рвотный;

• соматические рефлексы, участвующие в регуляции тонуса и двигательной активности мышц туловища, конечностей, шеи, лица.

39. Средний мозг. Его значение для регуляции мышечного то­нуса. Статокинетические и статические рефлексы.

Двигательные системы среднего мозга включают красные ядра, передние и задние холмики четверохолмия: передние - первичные зрительные центры вместе с латеральными коленчатыми телами; задние - первичные слуховые центры вместе с медиальными коленчатыми телами, ядра III и IV пары черепных нервов, черную субстанцию, ретикулярную формацию и голубое пятно. Ниже приведена характеристика рефлексов.

1. Характеристика рефлексов, осуществляемых средним мозгом (мезенцефальное животное). Они более совершенны, их набор значительно больше, тонус мышц близок к нормальному, поскольку сохраняется тормозящее влияние красного ядра на α- и γ-мотонейроны спинного мозга, наблюдается незначительная ригидность (см. рис. 5.9). Руброспиналъный тракт (тракт Монакова), который начинается от красного ядра покрышки среднего мозга и идет в спинной мозг, возбуждая α- и γ-мотонейроны сгибателей, повышает их тонус и реципрокно тормозит мотонейроны мышц-разгибателей, снижая их тонус. Аналогично на мышечный тонус действуют латеральный ретикулоспинальный (от ретикулярной формации продолговатого мозга) и пирамидный кортикоспинальный тракты. Вместе они составляют латеральную нисходящую сгибательную систему. Таким образом, в стволе мозга имеются четыре главных парных моторных центров и трактов, регулирующих тонус мышц туловища и конечностей, - два ретикулоспинальных пути, руброспинальный путь и волокна ядра Дейтерса (см. рис. 5.9). Рефлексы мезенцефального животного изучил голландский физиолог Р.Магнус (1924). Соматические рефлексы, связанные с изменением положения тела (точнее-головы) и перемещением его в пространстве, Р. Магнус разделил соответственно на две группы - статические и статокинетические.

40. Мозжечок. Его функции и значение при мышечной деятель­ности.

Мозжечок (cerebellum, малый мозг) — одна из интегративных структур головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций.

Особенности морфофункциональной организации и связи моз­жечка. Реализация указанных функций обеспечивается следующими морфологическими особенностями мозжечка:

1) кора мозжечка построена достаточно однотипно, имеет сте­реотипные связи, что создает условия для быстрой обработки ин­формации;

2) основной нейронный элемент коры — клетка Пуркинье, имеет большое количество входов и формирует единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на ядерных его структурах;

3) на клетки Пуркинье проецируются практически все видысенсорных раздражений: проприоцептивные, кожные, зрительные,слуховые, вестибулярные и др.;

4) выходы из мозжечка обеспечивают его связи с корой большого мозга, со стволовыми образованиями и спинным мозгом.

Мозжечок анатомически и функционально делится на старую, древнюю и новую части.

К старой части мозжечка (archicerebellum) — вестибулярный мозжечок — относится клочково-флоккулярная доля. Эта часть имеет наиболее выраженные связи с вестибулярным анализатором, что объясняет значение мозжечка в регуляции равновесия.

Древняя часть мозжечка (paleocerebellum) — спинальный моз­жечок — состоит из участков червя и пирамиды мозжечка, язычка, околоклочкового отдела и получает информацию преимущественно от проприорецептивных систем мышц, сухожилий, надкостницы, оболочек суставов.

Новый мозжечок (neocerebellum) включает в себя кору полуша­рий мозжечка и участки червя; он получает информацию от коры, преимущественно по лобно-мостомозжечковому пути, от зрительных и слуховых рецептирующих систем, что свидетельствует об его участии в анализе зрительных, слуховых сигналов и организации на них реакции.

Кора мозжечка имеет специфическое, нигде в ЦНС не повто­ряющееся, строение. Верхний (I) слой коры мозжечка — молеку­лярный слой, состоит из параллельных волокон, разветвлений дендритов и аксонов II и III слоев. В нижней части молекулярного слоя встречаются корзинчатые и звездчатые клетки, которые обес­печивают взаимодействие клеток Пуркинье.

Средний (II) слой коры образован клетками Пуркинье, вы­строенными в один ряд и имеющими самую мощную в ЦНС дендритную систему. На дендритном поле одной клетки Пуркинье может быть до 60 000 синапсов. Следовательно, эти клетки вы­полняют задачу сбора, обработки и передачи информации. Аксоны клеток Пуркинье являются единственным путем, с помощью ко­торого кора мозжечка передает информацию в его ядра и ядра структуры большого мозга.

Под II слоем коры (под клетками Пуркинье) лежит гранулярный (III) слой, состоящий из клеток-зерен, число которых достигает 10 млрд. Аксоны этих клеток поднимаются вверх, Т-образно делятся на поверхности коры, образуя дорожки контактов с клетками Пур­кинье. Здесь же лежат клетки Гольджи.

Из мозжечка информация уходит через верхние и нижние ножки. Через верхние ножки сигналы идут в таламус, в мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего мозга. Через нижние ножки мозжечка сигналы идут в продолговатый мозг к его вестибулярным ядрам, оливам, ретикулярной формации. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга.

Импульсная активность нейронов регистрируется в слое клеток Пуркинье и гранулярном слое, причем частота генерации импульсов этих клеток колеблется от 20 до 200 в секунду. Клетки ядер мозжечка генерируют импульсы значительно реже — 1—3 импульса в секунду.

Стимуляция верхнего слоя коры мозжечка приводит к длитель­ному (до 200 мс) торможению активности клеток Пуркинье. Такое же их торможение возникает при световых и звуковых сигналах. Суммарные изменения электрической активности коры мозжечка на раздражение чувствительного нерва любой мышцы выглядят в форме позитивного колебания (торможение активности коры, ги­перполяризация клеток Пуркинье), которое наступает через 15— 20 мс и длится 20—30 мс, после чего возникает волна возбуждения, длящаяся до 500 мс (деполяризация клеток Пуркинье).

В кору мозжечка от кожных рецепторов, мышц, суставных обо­лочек, надкостницы сигналы поступают по так называемым спинно-мозжечковым трактам: по заднему (дорсальному) и переднему (вентральному). Эти пути к мозжечку проходят через нижнюю оливу продолговатого мозга. От клеток олив идут так называемые лазающие волокна, которые ветвятся на дендритах клеток Пуркинье.

Ядра моста посылают афферентные пути в мозжечок, образующие мшистые волокна, которые оканчиваются на клетках-зернах III слоя коры мозжечка. Между мозжечком и голубоватым местом среднего мозга существует афферентная связь с помощью адренергических волокон. Эти волокна способны диффузно выбрасывать норадреналин в межклеточное пространство коры мозжечка, тем самым гуморально изменяют состояние возбудимости его клеток.

Аксоны клеток III слоя коры мозжечка вызывают торможение клеток Пуркинье и клеток-зерен своего же слоя.

Клетки Пуркинье в свою очередь тормозят активность нейронов ядер мозжечка. Ядра мозжечка имеют высокую тоническую актив­ность и регулируют тонус ряда моторных центров промежуточного, среднего, продолговатого, спинного мозга.

Подкорковая система мозжечка состоит из трех функционально разных ядерных образований: ядра шатра, пробковидного, шаровид­ного и зубчатого ядра.

Ядро шатра получает информацию от медиальной зоны коры мозжечка и связано с ядром Дейтерса и РФ продолговатого и среднего мозга. Отсюда сигналы идут по ретикулоспинальному пути к мотонейронам спинного мозга.

Промежуточная кора мозжечка проецируется на пробковидное и шаровидное ядра. От них связи идут в средний мозг к красному ядру, далее в спинной мозг по руброспинальному пути. Второй путь от промежуточного ядра идет к таламусу и далее в двигательную зону коры большого мозга.

Зубчатое ядро, получая информацию от латеральной зоны коры мозжечка, связано с таламусом, а через него — с моторной зоной коры большого мозга.

Мозжечковый контроль двигательной активности. Эфферентные сигналы из мозжечка к спинному мозгу регулируют силу мышечных сокращений, обеспечивают способность к длительному тоническому сокращению мышц, способность сохранять оптимальный тонус мышц в покое или при движениях, соразмерять произвольные движения с целью этого движения, быстро переходить от сгибания к разги­банию и наоборот.

Мозжечок обеспечивает синергию сокращений разных мышц при сложных движениях. Например, делая шаг при ходьбе, человек заносит вперед ногу, одновременно центр тяжести туловища пере­носится вперед при участии мышц спины. В тех случаях, когда мозжечок не выполняет своей регуляторной функции, у человека наблюдаются расстройства двигательных функций, что выражается следующими симптомами.

1) астения (astenia — слабость) — снижение силы мышечного сокращения, быстрая утомляемость мышц;

2) астазия (astasia, от греч. а — не, stasia — стояние) — утрата способности к длительному сокращению мышц, что затрудняет сто­яние, сидение и т. д.;

3) дистония (distonia — нарушение тонуса) — непроизвольное повышение или понижение тонуса мышц;

4) тремор (tremor — дрожание) — дрожание пальцев рук, кистей, головы в покое; этот тремор усиливается при движении;

5) дисметрия (dismetria — нарушение меры) — расстройство равномерности движений, выражающееся либо в излишнем, либо недостаточном движении. Больной пытается взять предмет со стола и проносит руку за предмет (гиперметрия) или не доносит ее до предмета (гипометрия);

6) атаксия (ataksia, от греч. а — отрицание, taksia — порядок) — нарушение координации движений. Здесь ярче всего проявляется невозможность выполнения движений в нужном порядке, в опре­деленной последовательности. Проявлениями атаксии являются так­ же адиадохокинез, асинергия, пьяная-шаткая походка. При адиадохокинезе человек не способен быстро вращать ладони вниз—вверх. При асинергии мышц он не способен сесть из положения лежа без помощи рук. Пьяная походка характеризуется тем, что человек ходит, широко расставив ноги, шатаясь из стороны в сторону от линии ходьбы. Врожденных двигательных актов у человека не так уж много (например, сосание), большинство же движений он выу­чивает в течение жизни и они становятся автоматическими (ходьба, письмо и т.д.). Когда нарушается функция мозжечка, движения становятся неточными, негармоничными, разбросанными, часто не достигают цели.

Данные о том, что повреждение мозжечка ведет к расстройствам движений, которые были приобретены человеком в результате обучения, позволяют сделать вывод, что само обучение шло с участием мозжечковых структур, а следовательно, мозжечок при­нимает участие в организации процессов высшей нервной дея­тельности;

7) дизартрия (disartria) — расстройство организации речевой моторики. При повреждении мозжечка речь больного становится растянутой, слова иногда произносятся как бы толчками (сканди­рованная речь).

При повреждении мозжечка наблюдается повышение тонуса мышц-разгибателей. Регуляция мышечного тонуса с помощью моз­жечка происходит следующим образом: проприоцептивные сигналы о тонусе мышц поступают в область червя и клочково-узелковую долю, отсюда — в ядро шатра, далее — к ядру преддверия и РФ продолговатого и среднего мозга и, наконец, по ретикулярно- и вестибулоспинальным путям к нейронам передних рогов спинного мозга, иннервирующих мышцы, от которых поступили сигналы. Следовательно, регуляция мышечного тонуса реализуется по прин­ципу обратной связи.

Следует отметить, что характер влияния на тонус мышц опре­деляется частотой генерации импульсов нейронов ядра шатра. При высокой частоте (30—300 имп/с) тонус мышц-разгибателей снижа­ется, при низкой (2—10 имп/с) — увеличивается.

Промежуточная область коры мозжечка получает информацию по спинальным трактам от двигательной области коры большого мозга (прецентральной извилины), по коллатералям пирамидного пути, идущего в спинной мозг. Коллатерали заходят в мост, а оттуда — в кору мозжечка. Следовательно, за счет коллатералей мозжечок получает информацию о готовящемся произвольном дви­жении, и возможность участвовать в обеспечении тонуса мышц, необходимого для реализации этого движения.

Латеральная кора мозжечка получает информацию из двигатель­ной области коры большого мозга. В свою очередь латеральная кора посылает информацию в зубчатое ядро мозжечка, отсюда по мозжечково-кортикальному пути в сенсомоторную область коры боль­шого мозга (постцентральная извилина), а через мозжечково-рубральный путь к красному ядру и от него по руброспинальному пути к передним рогам спинного мозга. Параллельно сигналы по пира­мидному пути идут к тем же передним рогам спинного мозга.

Таким образом, мозжечок, получив информацию о готовящемся движении, корректирует программу подготовки этого движения в коре и одновременно готовит тонус мускулатуры для реализации этого движения через спинной мозг.

Изменение тонуса мышц после повреждения мозжечка обуслов­лено тем, что исчезает торможение лабиринтных и миотатических рефлексов, которое в норме осуществляется мозжечком. В норме вестибулярные ядра активируют мотонейроны спинного мозга мышц-разгибателей, а мозжечок тормозит активность нейронов преддверного ядра. При повреждении мозжечка вестибулярные ядра бескон­трольно активируют мотонейроны передних рогов спинного мозга, в результате повышается тонус мышц-разгибателей конечностей.

При повреждении мозжечка усиливаются и проприоцептивные рефлексы спинного мозга (рефлексы, вызываемые при раздражении рецепторов сухожилий, мышц, надкостницы, оболочек суставов), но в этом случае снимается тормозное влияние на мотонейроны спинного мозга ретикулярной формации продолговатого мозга.

41. Промежуточный мозг. Функции зрительных бугров и подбугровой области. Их роль в организации сложных форм деятельности.

Промежуточный мозг, в котором расположены так называемые зрительные бугры, бледное тело и подбугровая область, является органом сложных врожденных координированных движений (безусловных рефлексов и инстинктов).

В зрительные бугры приходят все центростремительные нервы, доставляя сюда возбуждения от всех без исключения рецепторов. С помощью специальных волокон они имеют связь с корой головного мозга: все центростремительные сигналы, получаемые корой головного мозга, обязательно проходят через зрительные бугры. Поражение зрительных бугров приводит к расстройству или даже к полной потере чувствительности.

Бледное тело является средоточием двигательных центров, управляющих разнообразными движениями. Отсюда исходят многочисленные центробежные нервы к различным мышечным группам. Поражение бледного тела приводит к расстройству ряда движений или даже к двигательным параличам.

Бледное тело связано соединительными волокнами с зрительными буграми, благодаря чему большинство рефлекторных дуг замыкается в промежуточном мозге, не проходя через кору головного мозга: центростремительные нервные импульсы из зрительных бугров прямо передаются на двигательные центры бледного тела, что и приводит к осуществлению соответствующей двигательной реакции организма. Примером могут служить автоматические движения при ходьбе, беге, при пищевых рефлексах и т. д.

Подбугровая область является высшим органом вегетативной нервной системы. В ней сосредоточены центры обмена веществ в организме, сосудо-двигательные центры, центр теплорегуляции, поддерживающий постоянную температуру тела, и т.д. Благодаря подбугровой области промежуточный мозг осуществляет вегетативные сдвиги, связанные с эмоциональными процессами: изменение частоты дыхания и сердечных сокращений, покраснение или побледнение лица, изменение в деятельности желез внутренней секреции и т.д.

42. Кора больших полушарий головного мозга. Особенности ее строения, функции и методы исследования.

Кора больших полушарий головного мозга

слой серого вещества толщиной 1—5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга (См. Головной мозг), развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности (См. Высшая нервная деятельность), хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468—1670 см2.

Строение коры. Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними (рис. 1). Пространство между телами и отростками нервных клеток коры заполнено нейроглией (См. Нейроглия) и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80—90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры — афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон (рис. 2). Звездчатые клетки отличаются слабым развитием Дендритов и мощным развитием Аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением (см. Клетка). Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику (см. рис. 1 и 3).

Наиболее крупные подразделения территории коры — древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Характерная особенность деятельности коры — её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна (См. Сон), при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов (См. Биоэлектрические потенциалы) коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

43. Парасимпатический отдел вегетативной нервной системы. Его роль в регуляции деятельности сердца и пищевари­тельных органов.

Влияние парасимпатического отдела:

· На сердце — уменьшает частоту и силу сокращений сердца.

· На артерии — расширяет артерии.

· На кишечник — усиливает перистальтику кишечника и стимулирует выработку пищеварительных ферментов.

· На слюнные железы — стимулирует слюноотделение.

· На мочевой пузырь — сокращает мочевой пузырь.

· На бронхи и дыхание — сужает бронхи и бронхиолы, уменьшает вентиляцию лёгких.

· На зрачок — сужает зрачки.

44. Симпатический отдел вегетативной нервной системы. Его роль в регуляции различных функций органов. Влияние сим­патических нервов на работоспособность скелетных мышц.

Влияние симпатического отдела:

· На сердце — повышает частоту и силу сокращений сердца.

· На артерии — не влияет в большинстве органов, вызывает расширение артерий половых органов и мозга, сужение коронарных артерий и артерий лёгких[5].

· На кишечник — угнетает перистальтику кишечника и выработку пищеварительных ферментов.

· На слюнные железы — угнетает слюноотделение.

· На мочевой пузырь — расслабляет мочевой пузырь.

· На бронхи и дыхание — расширяет бронхи и бронхиолы, усиливает вентиляцию лёгких.

· На зрачок — расширяет зрачки.

45. Условные и безусловные рефлексы. Виды условных реф­лексов, их значение в спорте. Условные рефлексы второй сигнальной системы у человека.

Условных рефлекс, как приобретенных всегда формируется на базе безусловного рефлекса. Центры условных рефлексов находятся в коре головного мозга. В процессе формирования условных рефлексов устанавливается нервная связь между центрами условных рефлексов и безусловного рефлекса и тогда только при действии условного раздражителя активизируются центры безусловного рефлекса. Сил развития двигательного навыка, как условие рефлекса зависит от силы той связи, которая формируется между условным центром или безусловным центром.

Для формирования условного рефлекса необходимо соблюдать несколько правил:

1.
Подкрепление рефлекса значит, что не один раздражитель не может приобретать значение условного, если его действия не сопровождаются, не подкрепляются другим раздражителем, заранее вызываемым желаемое действие, например, условный раздражитель – свет будет вызывать слюноотделение у собаки, если подкреплять включение света пищей. У человека таким фактором подкрепления могут являться слова: слова поощрения, иногда наказания, слово – ознакомление с результатами движения. Другим примером подкрепления является непосредственное ощущение самого результата действия. Лучше всего образовывается навык в том случае, если в результате этого действия достигается какая-то определенная цель, когда нужно что-то достигнуть или преодолеть.

2.
Повторение, когда в процессе индукции возбуждение, а затем укрепления только те нервные связи, которые обеспечивают выполнение конкретного рефлекса.

3.
Кора головного мозга не должна быть занята другой деятельностью. Нельзя, например, одновременно несколько условных рефлексов, поскольку процесс возбуждения в одних НЦ может затормаживать образование условного рефлекса связи в других НЦ. Необходимо соблюдать также определенную периодичность повторяющихся упражнений. Пр, для ‑­

4.
улучшения моторной плотности урока иногда на гимнастических занятиях учащиеся от одного снаряда быстро переходят на другой. Можно предположить, что работа на другом снаряде даст возможность восстановить те НЦ, которые обеспечивают упражнение на первом снаряде, т.е. создают активных отдых, на ничего хорошего из такой динамики не получится, т.к. активность НЦ действительно сопровождается торможением, но по окончании процесса возбуждения в НЦ сохраняется последействие, т.е. некоторые степени возбудимости, поэтому когда возбуждается другой НЦ, то перед НЦ ставится трудная задача – вырабатывать 2 рефлекса, когда еще по инерции продолжается образовываться один условный рефлекс. Для того, чтобы перейти к образованию другого ожидания подхода к другому снаряду, не является пассивным отдыхом наблюдения за действием других. Так же представляет собой фактор, укрепления условного рефлекса зрительного впечатления.

5.
Необходим достаточный уровень возбудимости тех клеток, которые участвуют в образовании данного условного рефлекса. Если вырабатывается данный условный рефлекс, то скорость выработки этого навыка будет выше. Повышение возбуждения в НС достигается также предварительными упражнениями, подготовительная часть урока, упражнения в виде разминки повышают уровень возбудимости НЦ, облегчают образование условных рефлексов, т.е. без периода «врабатывания». Образование условно-рефлекторной связи затрудняется, т.к. без этого возбудимость коры недостаточно велика.Сила раздражителя – та минимальная сила раздражителя, которая может вызвать ответную реакцию называется пороговой силой. В спортивной практике примером силового раздражителя является интерес к выполняемому спортивному упражнению. Угасание чувства страха.

46. Формирование динамических стереотипов в процессе тре­нировки. Их роль при занятиях различными видами спорта. Значение типологических особенностей человека при заня­тиях спортом.

инамический стереотип — понятие, отражающее интеграцию условно-рефлекторных процессов в коре больших полушарий, которая достигается при многократном предъявлении одних и тех же положительных или тормозных условных раздражителей, следующих с постоянными интервалами времени между ними. При формировании динамического стереотипа происходят существенные энергозатраты, которые в дальнейшем окупаются за счет повышения эффективности работы нервной системы, т.к. после каждой реакции происходит автоматическая подготовка к последующей. Учитывать темперамент и тд, и тп

47. Фоторецепторы сетчатой оболочки глаза (палочки и кол­бочки) и их функции. Адаптация глаза к свету и темноте. Цветоразличение.


Фоторецепторы. К пигментному слою изнутри примыкает слой фоторецепторов: палочек и колбочек1. В сетчатке каждого глаза человека находится 6—7 млн колбочек и 110—123 млн палочек. Они распределены в сетчатке неравномерно. Центральная ямка сетчатки (fovea centralis) содержит только колбочки (до 140 тыс. на 1 мм2). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает, так что на дальней периферии имеются только палочки. Колбочки функционируют в условиях больших освещенностей, они обеспечивают дневное. и цветовое зрение; намного более светочувствительные палочки ответственны за сумеречное зрение.

Цвет воспринимается лучше всего при действии света на центральную ямку сетчатки, где расположены почти исключительно колбочки. Здесь же и наибольшая острота зрения. По мере удаления от центра сетчатки восприятие цвета и пространственное разрешение становятся все хуже. Периферия сетчатки, где находятся исключительно палочки, не воспринимает цвета. Зато световая чувствительность колбочкового аппарата сетчатки во много раз меньше, чем палочкового, поэтому в сумерках из-за резкого понижения «колбочкового» зрения и преобладания «периферического» зрения мы не различаем цвет («ночью все кошки серы»).

Нарушение функции палочек, возникающее при недостатке в пище витамина А, вызывает расстройство сумеречного зрения — так называемую куриную слепоту: человек совершенно слепнет в сумерках, но днем зрение остается нормальным. Наоборот, при поражении" колбочек возникает светобоязнь: человек видит при слабом" свете, но слепнет при ярком освещении. В этом случае может развиться и полная цветовая слепота — ахромазия.

Строение фоторецепторной клетки. Фоторецепторная клетка — палочка или колбочка — состоит из чувствительного к действию света наружного сегмента, содержащего зрительный пигмент, внутреннего сегмента, соединительной ножки, ядерной части с крупным ядром и пресинаптического окончания. Палочка и колбочка сетчатки обращены своими светочувствительными наружными сегментами к пигментному эпителию, т. е. в сторону, противоположную свету. У человека наружный сегмент фоторецептора (палочка или колбочка) содержит около тысячи фоторецепторных дисков. Наружный сегмент палочки намного длиннее, чем колбочки, и содержит больше зрительного пигмента. Это частично объясняет более высокую чувствительность палочки к свету: палочку может возбудить всего один квант света, а для активации колбочки требуется больше сотни квантов.

Фоторецепторный диск образован двумя мембранами, соединенными по краям. Мембрана диска — это типичная биологическая мембрана, образованная двойным слоем молекул фосфолипидов, между которыми находятся молекулы белка. Мембрана диска богата полиненасыщенными жирными кислотами, что обусловливает ее низкую вязкость. В результате этого молекулы белка в ней быстро вращаются и медленно перемещаются вдоль диска. Это позволяет белкам часто сталкиваться и при взаимодействии образовывать на короткое время функционально важные комплексы.

Внутренний сегмент фоторецептора соединен с наружным сегментом модифицированной ресничкой, которая содержит девять пар микротрубочек. Внутренний сегмент содержит крупное ядро и весь метаболический аппарат клетки, в том числе митохондрии, обеспечивающие энергетические потребности фоторецептора, и систему белкового синтеза, обеспечивающую обновление мембран наружного сегмента. Здесь происходят синтез и включение молекул зрительного пигмента в фоторецепторную мембрану диска. За час на границе внутреннего и наружного сегмента в среднем заново образуется три новых диска. Затем они медленно (у человека примерно в течение 2—3 нед) перемещаются от основания наружного сегмента палочки к его верхушке, В конце концов верхушка наружного сегмента, содержащая до сотни теперь уже старых дисков, обламывается и фагоцитируется клетками пигментного слоя. Это один из важнейших механизмов защиты фоторецепторных клеток от накапливающихся в течение их световой жизни молекулярных дефектов.

Наружные сегменты колбочек также постоянно обновляются, но с меньшей скоростью. Интересно, что существует суточный ритм обновления: верхушки наружных сегментов палочек в основном обламываются и фагоцитируются в утреннее и дневное время, а колбочек — в вечернее и ночное.

Пресинаптическое окончание рецептора содержит синаптическую ленту, вокруг которой много синаптических пузырьков, содержащих глутамат.

Зрительные пигменты. В палочках сетчатки человека содержится пигмент родопсин, или зрительный пурпур, максимум спектра поглощения которого находится в области 500 нанометров (нм). В наружных сегментах трех типов колбочек (сине-, зелено-и красно-чувствительных) содержится три типа зрительных пигментов, максимумы спектров поглощения которых находятся в синей (420 нм), зеленой (531 нм) и красной (558 нм) частях спектра. Красный колбочковый пигмент получил название «йодопсин». Молекула зрительного пигмента сравнительно небольшая (с молекулярной массой около 40 килодальтон), состоит из большей белковой части (опсина) и меньшей хромофорной (ретиналь, или альдегид витамина А).

Ретиналь может находиться в различных пространственных конфигурациях, т. е. изомерных формах, но только одна из них — 11-цис-изомер ретиналя выступает в качестве хромофорной группы всех известных зрительных пигментов. Источником ретиналя в организме служат каротиноиды, поэтому недостаток их приводит к дефициту витамина А и, как следствие, к недостаточному ресинтезу родопсина, что в свою очередь является причиной нарушения сумеречного зрения, или «куриной слепоты». Молекулярная физиология фоторецепции. Рассмотрим последовательность изменений молекул в наружном сегменте палочки, ответственных за ее возбуждение (рис. 14.7, А). При поглощении кванта света молекулой зрительного пигмента (родопсина) в ней происходит мгновенная изомеризация ее хромофорной группы: 11-цис-ретиналь выпрямляется и превращается в полностью транс-ретиналь. Эта реакция длится около 1 пс (1--12 с). Свет выполняет роль спускового, или триггерного, фактора, запускающего механизм фоторецепции. Вслед за фотоизомеризацией ретиналя происходят пространственные изменения в белковой части молекулы: она обесцвечивается и переходит в состояние метародопсина II.

48. Аккомодация глаза. Острота и поля зрения. Их значение при некоторых видах спортивной деятельности.

Аккомодация. Аккомодацией называют приспособление глаза к ясному видению объектов, удаленных на разное расстояние. Для ясного видения объекта необходимо, чтобы он был сфокусирован на сетчатке, т. е. чтобы лучи от всех точек его поверхности проецировались на поверхность сетчатки (рис. 14.4). Когда мы смотрим на далекие предметы (А), их изображение (а) сфокусировано на сетчатке и они видны ясно. Зато изображение (б) близких предметов (Б) при этом расплывчато, так как лучи от них собираются за сетчаткой. Главную роль в аккомодации играет хрусталик, изменяющий свою кривизну и, следовательно, преломляющую способность. При рассматривании близких предметов хрусталик делается более выпуклым (см. рис. 14.2), благодаря чему лучи, расходящиеся от какой-либо точки объекта, сходятся на сетчатке. Механизмом аккомодации является сокращение ресничных мышц, которые изменяют выпуклость хрусталика. Хрусталик заключен в тонкую прозрачную капсулу, которую всегда растягивают, т. е. уплощают, волокна ресничного пояска (циннова связка). Сокращение гладких мышечных клеток ресничного тела уменьшает тягу цинновых связок, что увеличивает выпуклость хрусталика в силу его эластичности. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. Введение в глаз атропина вызывает нарушение передачи возбуждения к этой мышце, ограничивает аккомодацию глаза при рассматривании близких предметов. Наоборот, парасимпатомиметические вещества — пилокарпин и эзерин — вызывают сокращение этой мышцы.

Для нормального глаза молодого человека дальняя точка ясного видения лежит в бесконечности. Далекие предметы он рассматривает без всякого напряжения аккомодации, т. е. без сокращения есничной мышцы. Ближайшая точка ясного видения находится на расстоянии 10 см от глаза.

49. Вестибулярная сенсорная система. Строение и функция преддверия и полукружных каналов. Значение их функции при спортивной деятельности.

Вестибулярный анализатор, как и другие рецепторы, у высших животных и человека представляет собой сложно устроенный орган, сформировавшийся в процессе ряда филогенетических преобразований.

Согласно современным представлениям, периферический вестибулярный анализатор состоит из двух самостоятельных органов: филогенетически более раннего отолитового аппарата и филогенетически более позднего аппарата полукружных каналов. Обе названные части различны по своему строению и функции.

Строение периферического вестибулярного анализатора человека представляется в следующем виде:

В пирамидке височной кости человека помещается сложное образование - лабиринт, включающий два периферических рецепторных аппарата: слуховой (улитка) и вестибулярный (преддверие и полукружные каналы).

Костные полукружные каналы представляют собой дугообразные трубки, расположенные в трех взаимно перпендикулярных плоскостях, преддверие же - полость эллиптической формы, разделенную костным гребешком на два углубления.

Полости костных полукружных каналов и преддверия заполнены бесцветной прозрачной жидкостью - перилимфой, в которой находятся в подвешенном состоянии (при помощи соединительнотканных тяжей) перепончатые образования, повторяющие форму костных образований перепончатые полукружные каналы и мешочки преддверия (utriculus et sacculus)]. Внутри перепончатых образований имеется более густая бесцветная жидкость - эндолимфа.

Перепончатый лабиринт при помощи эндолимфатического канала (ductus endolymphaticus) сообщается с sacculus endolymphaticus, который находится вне лабиринта в черепной полости, в дубликатуре твердой мозговой оболочки.

Перепончатые полукружные каналы, как и костные, на одном конце имеют утолщение - ампулу, в которой располагается рецепторный прибор (периферическая часть вестибулярного анализатора - cristae ampullaris).

В этих местах однослойный плоский эпителий, выстилающий внутреннюю поверхность перепончатых полукружных каналов, заменен клетками двух родов: 1) бокаловидными чувствительными нейроэпителиальными и 2) опорными, имеющими цилиндрическую или веретенообразную форму.

Чувствительные клетки имеют в своем свободном конце непостоянное число волосков. Эти волоски окутаны полупрозрачным студенистым веществом и образуют нечто вроде кисти, свободно расположенной в просвете перепончатого канала (cupula ampullaris), которая может смещаться при движении эндолимфы.

Некоторые авторы считают, что волоски нейроэпителия не свободны в просвете ампулы, а прикрепляются к противоположной ее стенке, образуя собой как бы заслонку.

В перепончатых мешочках преддверия также заложены свои рецепторные образования в виде maculae staticae.

В области maculae staticae utriculi et sacculi, так же как в области cristae ampullaris полукружных каналов, располагаются чувствительные и опорные клетки.

Чувствительные клетки, основанием своим связанные с нейрофибриллами вестибулярного нерва, на свободных концах имеют короткие волокна. Из опорных клеток отходят длинные волоски, которые, переплетаясь между собой, образуют нечто вроде войлока, склеенного желатиноподобной массой - membrana otolitica, в которой имеются кристаллы углекислого и фосфорнокислого кальция (отолиты).

Под действием силы тяжести и инерции отолитовая мембрана может смещаться в эндолимфе.

В процессе эволюции наряду с постепенным усложнением периферических рецепторных аппаратов происходило и усложнение проводящих путей и центров этой системы.

Аксоны биполярных клеток узла gangl. Scarpae вместе с волокнами кохлеарной ветви располагаются во внутреннем слуховом проходе и образуют ствол VIII пары черепномозговых нервов, которые входят в вещество продолговатого мозга в области ромбовидной ямки и делятся на кохлеарную и вестибулярную ветви. Вестибулярная ветвь, проникая в продолговатый мозг между corpus restiforme и нисходящим корешком тройничного нерва, подходит к вестибулярным ядрам.

Согласно современным представлениям, имеется четыре вестибулярных ядра: триангулярное, латеральное, верхнее, вентрально-нисходящее, которые представляют собой комплекс различных по своему филогенетическому развитию образований.

Выделяют пять вестибулярных рефлекторных дуг.

1. Вестибуло-спинальная рефлекторная дуга представляет собой нисходящие пути от вестибулярных ядер к клеткам передних рогов спинного мозга: 1) от ядра Дейтерса в составе бокового столба спинного мозга идут нисходящие волокна вестибулярного нерва к клеткам передних рогов всех отделов спинного мозга; 2) от треугольного ядра и ядра нисходящего корешка вестибулярного нерва через задний продольный пучок к шейному отделу спинного мозга.

По этим путям осуществляются вестибулярные тонические рефлексы на туловище и конечности. Вестибулярный аппарат непрерывно посылает импульсы для регуляции тонуса мышц, позы туловища.

Нарушение шейных тонических рефлексов и рефлексов с верхних конечностей указывает на участие в процессе нисходящих путей от треугольного ядра и ядра нисходящего корешка вестибулярного нерва. Нарушение тонических рефлексов мышц туловища происходит при поражении волокон, идущих от ядра Дейтерса.

Однако не следует забывать, что в регуляции мышечного тонуса под общим контролирующим действием коры головного мозга участвует общая чувствительность, глубокое мышечное чувство, зрительный анализатор и мозжечок.

2. Вестибуло-глазодвигательная рефлекторная дуга. От вестибулярных ядер стволового отдела мозга идет II вестибулярный нейрон: от ядра Бехтерева неперекрещенный - восходящий путь, от треугольного и, возможно, части ядра Роллера (ядра нисходящего корешка) - перекрещенный восходящий путь. Эти пути поднимаются в составе заднего продольного пучка до задней белой спайки и зрительного бугра, откуда начинается III нейрон вестибулярного нерва.

Восходящие вестибулярные пути, идущие в заднем продольном пучке, имеют анатомические связи с ядрами глазодвигательных нервов (III-IV-VI). По этой дуге осуществляется вестибулярный нистагм и регулируются содружественные движения глаз при перемене положения тела или головы в пространстве.

С. Я. Гольдин подчеркивает наличие связей вестибулярных ядер с соответствующими полукружными каналами. Таким образом выделяются дуги горизонтальных, вертикальных и ротаторных вестибулярных рефлексов, при нарушении которых наблюдаются двигательные рефлексы в соответствующих плоскостях.

50. Функции наружного, среднего и внутреннего уха. Значение слуховой сенсорной системы при спортивной деятельности.

Функция ушной раковины — улавливать звуки; её продолжением является хрящ наружного слухового прохода, длина которого в среднем составляет 25—30 мм. Хрящевая часть слухового прохода переходит в костную, а весь наружный слуховой проход выстлан кожей, содержащей сальные, а также серные железы, представляющие собой видоизмененные потовые. Этот проход заканчивается слепо: от среднего уха он отделен барабанной перепонкой. Уловленные ушной раковиной звуковые волны ударяются в барабанную перепонку и вызывают её колебания.

Для предотвращения разрыва барабанных перепонок от ударной волны взрыва, солдатам рекомендовали по возможности заранее открывать рот, когда ожидается взрыв.

В свою очередь, колебания барабанной перепонки передаются в среднее ухо:

Здесь находятся три слуховые косточки: молоточек, наковальня и стремечко — они передают звуковые колебания из наружного уха во внутреннее, одновременно усиливая их.

Слуховые косточки — как самые маленькие фрагменты скелета человека, представляют цепочку, передающую колебания. Рукоятка молоточка тесно срослась с барабанной перепонкой, головка молоточка соединена с наковальней, а та, в свою очередь, своим длинным отростком — со стремечком. Основание стремечка закрывает окно преддверия, соединяясь таким образом с внутренним ухом.

Полость среднего уха связана с носоглоткой посредством евстахиевой трубы, через которую выравнивается среднее давление воздуха внутри и снаружи от барабанной перепонки. При изменении внешнего давления иногда «закладывает» уши[2], что обычно решается тем, что рефлекторно вызывается зевота. Опыт показывает, что ещё более эффективно заложенность ушей решается глотательными движениями[2] или если в этот момент дуть в зажатый нос.

Из трех отделов органа слуха и равновесия наиболее сложным является внутреннее ухо, которое из-за своей замысловатой формы называется лабиринтом. Костный лабиринт состоит из преддверия, улитки и полукружных каналов (расположенными во всех трёх взаимоперпендикулярных плоскостях[3] и заполненных жидкостями, перилимфой и эндолимфой[3]). Во внутреннем ухе расположена как улитка, орган слуха, так и вестибулярная система[2] (являющаяся органом равновесия и ускорения)[3].

Слуховой проход здесь перегорожен барабанной перепонкой, которая вибрирует при столкновении со звуковой волной, с частотой тем большей, чем выше звук. В систему косточек внутреннего уха входят молоточек, наковальня и стремечко; молоточек прикреплён рукояткой к барабанной перепонке, стремечко расположено на овальном окне, а наковальня сочленена с разных сторон с обеими этими костями. Наковальня позволяет увеличить давление на овальное окно в 20 раз по сравнению с давлением на барабанную перепонку[2].

Колебания овального окна передаются жидкости, которая раздражает распол





Дата публикования: 2014-12-30; Прочитано: 318 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.043 с)...