Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Схемы обучения нейронных сетей



Обучение НС можно рассматривать как непрерывный или как дискретный процесс. В соответствии этим алгоритмы обучения могут быть описаны либо дифференциальными уравнениями, либо конечно-разностными.

В начале обучения веса и пороговые значения нейронов инициализируются случайными величинами. Поэтому ошибка в начале обучения очень велика, и есть смысл вводить большие коррекции параметров. Ближе к концу обучения ошибка значительно снижается, и коррекции должны быть малыми. Чтобы менять длину шагов по параметрам, используют:

· метод расписания обучения (learning schedule);

· стохастические алгоритмы.

Алгоритмы с расписанием обучения сходятся быстрее, т.к. в начале используются большие коррекции, и дают более точные результаты за счет точной настройки параметров в конце обучения. Здесь преодолеваются локальные минимумы на начальном этапе обучения. Коррекции настолько велики, что параметры "проскакивают" оптимальное значение и сеть попадает в область притяжения другого минимума, а не задерживается в первом найденном минимуме.

Технологии обучения

Если использовать небольшой набор обучающих данных, то при обучении сеть будет слишком близко следовать обучающим данным (переобучаться) и воспринимать не столько структуру данных, сколько содержащиеся в ней помехи. Способность сети не только учиться на обучающем множестве, но и показывать хорошие результаты на новых данных (хорошо предсказывать) называется обобщением.

Стандартный способ обучения НС заключается в том, что сеть обучается на одном из множеств базы данных, а на другом проверяется результат, т.е. проверочное множество для обучения не используется. Первое из этих множеств называют обучающим, второе - тестовым. Качество обобщения данных можно определить, наблюдая за величиной ошибки, вычисленной на тестовом множестве данных.

Если после нескольких итераций обучающего алгоритма ошибка обучения падает почти до нуля, в то время как ошибка обобщения сначала убывает, а потом снова начинает расти, то это признак переобучения, и при росте ошибки обобщения обучение следует прекра­тить. В данном случае тестовое множество используется при обучении НС для определения момента «ранней остановки», поэтому по окончании обучения следует проверить работу сети еще на одном - третьем множестве (подтверждающем).

 
 

Если тестовое множество используется на каждой итерации при обучении НС для определения «ранней остановки», то такой процесс называется обучением с перекрестной проверкой. На рис. 3.17 представлены стратегии обучения с перекрестной (или кросс-) проверкой. Переключение между типами множеств (обучающим, тестовым, подтверждающим) во время процедуры обучения может осуществляться вероятностным способом. Такой подход позволяет остановить обучение, когда частота появления ошибок обобщения начнет расти.

Несмотря на все усилия по обучения НС, она все же может не обучаться. Причины этого могут быть в следующем:

1) противоречивость ОВ;

2) нерепрезентативность ОВ;

3) неравномерность ОВ, т.е.





Дата публикования: 2014-11-28; Прочитано: 544 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.071 с)...