Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Лекции 10, 11 (4 часа). Гидротермальные месторождения



Общая характеристика. Связь с магматизмом и гидротермальные изменения вмещающих пород. Зональность гидротермальных месторождений. Ореолы рассеяния. Физико-химические условия рудообразования, источники воды и минерального вещества гидротермальных систем, формы переноса минеральных соединений гидротермальными растворами.

Длительность образования гидротермальных месторождений. Классификация месторождений. Генетические типы гидротермальных месторождений.

Вопрос 1.Общая характеристика. Гидротермальные месторождения – это месторождения, созданные горячими минерализованными растворами, циркулирующими в земной коре. Полезные ископаемые возникают как вследствие отложения минеральных масс в пустотах горных пород, так и при замещении пород, по которым циркулируют гидротермальные растворы. Наиболее типичной формой рудных тел являются жилы. Часто встречаются штокверки, линзы, гнезда, пластообразные залежи и сложные по форме комбинированные тела. Образование таких месторождений часто связывается с производными магматических очагов (преимущественно кислых). Однако существуют и другие источники горячих минерализованных растворов (подземные воды глубокой циркуляции, собственные флюиды осадочно-породных бассейнов и др.). Гидротермальные месторождения обычно сопровождаются ореолами гидротермально измененных пород, а также ореолами рассеяния рудообразующих металлов, что используется при поисках данных месторождений.

Размеры тел полезных ископаемых гидротермального происхождений изменяются в широких пределах. На Березовском месторождении золота – это жилы, длиной 2-3 м, встречаются жильные тела, протяженностью несколько километров и даже сотни километров (Материнская жила, Калифорния).

Доказательством формирования полезных ископаемых из гидротерм являются многочисленные исследования современных минеральных источников. Горячие воды (80-96°С) Узун-Гейской системы на Камчатке за 100 лет вынесли (в тыс. тонн): мышьяка – 26, сурьмы – 5, ртути -2,5, цинка – 2, свинца и меди по 2,5. Фумаролы «Долины тысячи дымов» на Аляске ежегодно выделяют свыше миллиона тонн соляной и около 200 тыс. т плавиковой кислоты. Горячие воды глубокой скважины Южной Калифорнии представлены высококонцентрированным (36%) гидротермальным раствором, с хлоридами щелочей, 2 г/т серебра, 15 г/т меди, 100 г/т свинца, 700 г/т цинка.

Гидротермальные месторождения имеют важное промышленное значение для цветных, благородных, редких, радиоактивных металлов, многих нерудных полезных ископаемых (хризотил-асбеста, барита, флюорита, магнезита, гоного хрусталя, исландского шпата и др.).

Вопрос 2. Связь с магматизмом и гидротермальные изменения вмещающих пород. Гидротермальные месторождения могут образовываться в различных геодинамических обстановках, но преимущественно – в зонах орогенеза и при тектоно-магматической активизации континентов. Поэтому наиболее типична – связь гидротермальных процессов с гранитоидным магматизмом в разных его проявлениях. Месторождения могут пространственно и генетически связаны интрузиями (штоками, дайками) гранитов, гранодиоритов, диоритов, а также с вулканическими андезитодацитами, риолитами, реже они находятся в ассоциациях с формациями щелочных и трапповых пород. Но в связи с перидотивой и габбровой формациями гидротермальные месторождения практически не образуются. Это объясняется разной насыщенностью водой (растворимостью воды) в магмах основного, ультраосновного и кислого состава.

Формы связи гидротермальных месторождений и изверженных пород могут быть:

- непосредственные (собственно генетические) или материнские, при которых месторождения располагаются в центре или по периферии магматических массивов, а растворы, из которых они формируются являются постмагматическими;

- парагенетические, косвенные или братские, при которых постмагматические минеральные месторождения, часто разобщающиеся от интрузивной массы, особенно на глубине, являются производными породившего их общего глубинного магматического очага;

- агенетические, случайные, объединяющие на одной площади генетически не связанные интрузивы и гидротермальные месторождения, особенно принадлежащие разным геологическим эпохам;

- отсутствие видимых связей

Генетическая связь с магматизмом наиболее легко устанавливается, если гидротермальные образования находятся в непосредственной близости от (или внутри) массивов изверженных пород. Значительно труднее установить такие генетические взаимоотношения для гидротермальных месторождений, локализующихся на удалении от магматических комплексов – в осадочных или метаморфических формациях пород. Среди признаков связи между гидротермальными месторождениями и комплексами изверженных пород могут быть следующие:

1) одновременность магматических образований и гидротермальных месторождений, устанавливаемая по комплексу геологических признаков, по определениям абсолютного возраста минералов и др.;

2) приуроченность к одним и тем же геологическим структурам,

3) фациально-глубинные одинаковые условия образования,

4) одинаковая степень метаморфизма.

5) зональное размещение гидротермальных месторождений по отношению к массивам магматических тел,

6) геохимическое родство.

Гидротермальные изменения вмещающих пород. В процессе взаимодействия гидротермальных растворов с породами, вмещающими рудные тела, происходит их метасоматическое преобразование. По главному химическому элементу, вытесняющему другие породообразующие элементы, различают несколько видов околорудного метасоматоза.

Калиевый метасоматоз по мере снижения температуры процесса проявляется в виде калиевой полевошпатизации, мусковитизации, серицитизации и каолинизации. При калиевой полевошпатизации образуются ореолы ортоклаза или микроклина. Мусковит замещает темноцветные минералы, отчасти полевые шпаты. Серицитизация обычна для кислых и средних пород и связана с замещениями плагиоклаза. Каолинизация (аргиллизация) приводит к развитию в гидротермально измененных породах каолина, диккита, накрит.

Натриевый метасоматоз приводит к замещению калиевых полевых шпатов натровыми или кислыми плагиоклазами типа альбита, что обычно для кислых пород.

Кремниевый метасоматоз может развиваться по породам любого состава. Окварцевание по сланцам приводит к образованию роговиков, по кислым и средним изверженным породам формируются вторичные кварциты, по карбонатным породам – джаспероиды.

Магниевый метасоматоз приводит к преобразованию известняков и мраморов в доломиты.

Железо-магниевый метасоматоз – хлоритизация по породам различного состава (за исключением чистых кварцевых и карбонатных пород).

Кальциевый метасоматоз проявляется в виде пропилитизации и листвинитизации. Пропилиты развиваются среди средних и основных пород особенно эффузивных. В их состав входят карбонаты (анкерит, кальцит), альбит, хлорит, эпидот, серицит, соссюрит. Листвениты чаще всего развиваются по змеевикам, ультраосновным, основным породам. Этот процесс выражен развитием на месте темноцветных силикатов и полевых шпатов – магнезиально-железистых карбонатов, талька, хлорита, фуксита, серицита, пирита, с превращением породы в карбонат-кварц-серицитовый агрегат с пиритом.

На многих золоторудных гидротермальных месторождениях, локализованных в гранитоидных породах, широко развита кварц-серицитовая фация гидротермальных изменений – березитизация. Березит – это старинный термин уральских горняков, которые использовали данные метасоматические породы как поисковый признак на золото. Первое петрографическое описание березитов дано в 1975 г. Карпинским. В настоящее время березитами называют гидротермально измененные и часто рудоносные породы, образующиеся из разнообразных, но преобладающих алюмосиликатных пород (гл. обр. кислых), и состоящие из кварца и серицита, с постоянной примесью пирита и рутила.

Вопрос 3. Зональность гидротермальных месторождений. Первичная зональность рудных районов, полей, месторождений и отдельных рудных тел определяется закономерным изменением минерального и связанного с ним химического состава руд в пространстве.

Эволюционная гипотеза В.Эммонса, объясняющая причины зональности гидротермальных месторождений по отношению к магматическим очагам, была выдвинута в 20-х годах ХХ века. Согласно этой гипотезе восходящие растворы, отделяющиеся от остывающих массивов магматических пород и насыщенные минеральными соединениями, откладывают минералы в порядке, обратном их растворимости, входя во все более холодные области. Опираясь на этот принцип, В.Эммонс реконструировал постмагматическую рудоносную систему, разделив её на 16 зон (снизу вверх по мере падения температуры): пустая кварцевая, оловянная, вольфрамовая, мышьяковая (арсенопиритовая), висмутовая, золотая, медная, цинковая, свинцовая, серебряная, безрудная, серебряная, золотая, сурьмяная, ртутная, пустая. В дальнейшем было установлено, что такая собирательная зональность нигде в полном виде не проявляется, хотя отдельнрые её звенья наблюдаются в природе.

Пульсационная гипотеза С.Смирнова была разработана в противовес одноактной схеме зонального размещения постмагматических рудных месторождений. В 1937 г. С.Смирнов выдвинул новую модель о пульсационном поступлении гидротермальный растворов, которые импульсами отделяются от магматического очага по мере его остывания в результате неоднократного раскрытия трещин. Так осуществляется многостадийный гидротермальный процесс, что подтверждено преобладающими исследователями гидротермальных месторождений. К критическим замечаниям по несостоятельности теории В.Эммонса С.Смирнов относил, кроме отсутствия полной эволюционной зональности, ряд геологических признаков. Это пересечения разновозрастных жил разного состава, совмещение в пространстве высокотемпературных и низкотемпературных ассоциаций, брекчии и др. Согласно теории С.Смирнова состав металлов в каждой новой порции гидротермального раствора изменяется во времени, что приводит к последовательному формированию месторождений различного состава.

В настоящее время геологи признают разные типы и формы проявления зональности на гидротермальных месторождениях и относительно магматических источников рудоносных растворов. Так, В.И.Смирновым выделяются два рода первичной зональности гидротермальных рудных тел – зональность первого рода (стадиальная) и зональность второго рода (фациальная). Зональность стадиальная разделяется на зональность повторных тектонических разрывов, зональность тектонического раскрывания трещин, зональность внутрирудного метасоматоза. Зональность фациальная включает зональность состава пород, фильтрационную зональность, зональность отложения.

Вопрос 4. Ореолы рассеяния. Вмещающие породы вокруг гидротермальных рудных тел часто сопровождаются повышенным количеством рудообразующих металлов. Площади распространения таких пород называются ореолами рассеяния, которые могут быть первичными и вторичными.

Первичные ореолы образуются при формировании месторождений вследствие пропитывания вмещающих пород минерализованными гидротермальными растворами. Они представлены тонкой спорадической вкрапленностью рудообразующих минералов, которые рассеяны во вмещающих породах по периферии рудных тел и не всегда улавливаются визуально. Против натурального геохимического фона – кларка, содержание рудообразующих элементов повышено на несколько порядков и определяется по данным анализов проб, отбираемых при специальной металлометрической съемке.

Форма первичных ореолов, также как морфология зон гидротермально измененных пород, имеет вид чехла, облекающего рудные тела. Ореолы больше вытянуты вверх над рудными телами, чем в сторону от них. Они сопровождаются апофизами вдоль структур, благоприятных для оттока гидротермальных растворов (трещиноватости, разломов, зон дробления). Сводка данных (Э.Баранов, С.Григорян, Л.Овчинников) по вертикальной зональности химических элементов в первичных ореолах рассеяния гидротермальных месторождений свидетельствует о том, что одни металлы предпочтительнее занимают нижние подрудные части ореолов, другие – средние, а третьи – верхние надрудные. Это связано с различной подвижностью элементов в растворах. Единый ряд распределения типичных элементов в ореолах рассеяния (сверху вниз) представляется в следующем виде: Ba-Sb, Hg, Ag, Rb, Zn, Au, Cu, Vi, W, Mo, U, Sn, Co, Ni, Be. Этот универсальный ряд также как ряд Эммонса в полном виде не проявляется, но отдельные его звенья наблюдаются в природе. Причем существуют определенные наборы элементов для конкретных промышленных типов гидротермальных месторождений и по их составу можно прогнозировать различные уровни эрозионного среза этих месторождений, а также координировать направление поисков рудных тел.

Вторичные ореолы образуются при химическом разложении и механическом разрушении верхней части рудных тел в приповерхностной зоне, в связи с разносом рудного материала по поверхности земли. Среди них выделяются механические, водные, газовые, смешанные ореолы.

Вопрос 5. Физико-химические условия рудообразования, источники воды и минерального вещества гидротермальных систем, формы переноса минеральных соединений гидротермальными растворами.

Растворы, в которых переносятся минеральные вещества и из которых образуются полезные ископаемые, являются большей частью водными. По физическому состоянию они могут относиться к взвесям, коллоидам и молярным растворам. Для их проникновения сквозь массу горных пород необходимо, чтобы эти породы обладали проницаемостью, пористостью, пустотами. Полезные минералы выпадают из горячих минерализованных растворов при различных физико-химических условиях, которые определяются, прежде всего, температурой и давлением.

Температура образования гидротермальных месторождений. Завершение раскристаллизации магмы на глубине происходит при температурах 1000-800°С. Начальная температура гранитного пегматитового расплава оценивается в 800-700°С. Непосредственное измерение газовых струй современных вулканов показывает, что хотя в отдельных редких случаях она достигает 1020°С, обычно же лежит ниже 700°С. Определения температур кристаллизации гидротермальных минералов по газо-жидким включениям показывают значения от 560-540°С до 50-25°С. Наиболее характерны температуры гидротермального процесса в интервале 400-100°С.

Давление при образовании гидротермальных месторождений в некоторой степени соответствует их глубине формирования. Так, согласно И.Кушнареву, все эндогенные месторождения Кураминских гор (включая гидротермальные) образовались в пределах глубин 500-4500 м. Это соответствует гидростатическому давлению 5-45 МПа и литостатическому давлению 13-115 МПа. Фактически оно может быть и больше и меньше. Меньше при образовании открытых полостей при тектонических деформациях, а больше в связи с превращением воды в пар, который сжатый в порах может повышать давление, таких причин может быть множество. Все существующие в настоящее время попытки измерить давление на основании различных экспериментов позволяют лишь выявить широкий диапазон. Гидротермальное рудообразование может начинаться при высоких давлениях – от первых десятков до 400-500 МПа, но наиболее продуктивной рудообразующей стадии обычно соответствует давление 150-200 МПа.

Источники воды гидротермальных систем также могут быть различны. К ним относят следующие источники: магматическая вода, вода метаморфического происхождения, захороненная вода древних осадков, атмосферная, или вадозная вода глубокой циркуляции, вода морей и океанов, вовлекаемая в гидротермальные системы.

Магматическая вода (или ювенильная) отделяется от магматических расплавов в процессе их остывания и преобразования в изверженную породу. По данным разных авторов кислые магмы содержат не менее 2% и до 10% воды, основные – не менее 1 % и до 5-6%. Если принять за среднее содержание воды в магматическом расплаве 8 %, а удерживающуюся воду при кристаллизации глубинных пород в количестве 1 %, то 7 % воды, высвобождающейся при кристаллизации расплава составят около 0,2 км3 от каждого кубического километра расплава.

Метаморфическая вода формируется в результате прогрессивного метаморфизма горных пород под действием возрастающих температур и давлений. В свежих слабометаморфизованных породах может находиться около 30% (от массы пород) воды различных форм: поровой, пленочной, капиллярной, интерминеральной, конституционной. При различных ступенях метаморфизма происходит высвобождение различных форм этой воды. Согласно Г.Войткевичу и Г.Лебедько, свежий осадок может содержать до 60 % воды, в зоне диагенеза и катагенеза сохраняется 30-20 %, в породах зеленосланцевой фации около 4 %, в породах амфиболовой фации 2-1 %, а гранулитовой – около 0,5%. Если принять плотность глинистых пород 2,5 г/см3 и потерю воды 9%, то при метаморфизме 1 км3 осадков высвободится около 200 млн. т воды. Эта вода может быть реализована при образовании гидротермальных месторождений.

Захороненная вода находится в пористом пространстве древних осадков, погруженных вместе с осадками на глубину и слагающих различные формации осадочных пород. Первоначально количество такой воды может достигать первых десятков процентов от массы породы. Под воздействием тектонических, магматических процессов(стресс, внедрение магматических масс) захороненная вода может высвобождаться, нагреваться, приходить в движение, участвовать в формировании гидротермальных систем.

Атмосферная вода при соответствующих гидрогеологических условиях может проникать в глубинные части земной коры, нагреваться, минерализоваться и приобретать свойства гидротермальных растворов.

Морская вода также может быть вовлечена в гидротермальный процесс в тех случаях, когда в придонные части моря или океана внедряются магматические массы, создающие местные очаги разогрева. Происходит засасывание морских вод на глубину и вовлечение их в систему гидротермальной циркуляции.

Источники минерального вещества при формировании гидротермальных систем можно разделить на три главных группы:

1) ювенильный магматический или базальтоидный подкоровый,

2) ассимиляционный магматический, или гранитоидный коровый,

3) фильтрационный внемагматический.

Формы переноса минеральных соединений в гидротермальных растворах:

1) в истинных растворах,

2) в коллоидных растворах,

3) в легкорастворимых соединениях ионных растворов,

4) в легкорастворимых соединениях комплексных растворов.

Вопрос 6. Длительность образования гидротермальных месторождений. Продолжительность поступления растворов в зону рудоотложения и выпадения из них руд находится в прямой связи с продолжительностью существования источника этих растворов, в частности, продолжительности существования остаточного магматического расплава, обогащенного соединениями металлов, т.е. длительностью периода его застывания и отделения от него флюидов. Длительность процесса отделения растворов, продолжительность их подъема и выпадение из них рудных и сопровождающих их минералов будут тем длительнее, чем глубже от поверхности земли находится остаточный расплав и чем больше его объем. Процесс этот будет также более продолжительным, если расплав окажется более нагретым, а перекрывающие его породы менее проницаемы для газов и растворов и менее теплопроводны. Так, по данным Г.Смита, что месторождение золота Мак-Интайр (Канада) сформировалось неглубоко от поверхности Земли в течение 750 лет. Д.Уайт и С.Робенсон считают, что руды одного из крупных малоглубинных ртутных месторождений в Калиформии – Сульфур-Бенк, формировались 10 тыс. лет. На примере п-ова Челенкен можно подсчитать, что для образования небольшого месторождения свинцовых руд достаточно всего несколько сот лет, если скорость накопления руд останется прежней.

Д.В.Рунквист (1965) рассчитал, что руды одного месторождения возникают за десятки и сотни тысяч лет, а отложение минералов из одной отдельной порции раствора (продолжительность одной стадии рудообразования) длится от одной тысячи до десятка тысяч лет.

Вопрос 7. Классификации гидротермальных месторождений. Существует множество классификаций гидротермальных месторождений: по геологическим условиям образования (в частности по глубине, связи с изверженными породами), по минеральному составу руд и составу околорудных изменений вмещающих пород, по физико-химическим условиям их формирования и др.

Температурная классификация гидротермальных месторождений - одна из значимых, разработана В.Лингреном и была усовершенствована многими исследователями, особенно в связи с развитием во второй половине 20 века термобарогеохимического метода, позволяющего определять температуры кристаллизации прозрачных минералов. Всю группу гидротермальных месторождений можно разделить на три класса:

1) высокотемпературные (300-500°С),

2) среднетемпературные (200-300°С),

3) низкотемпературные (50-200°С).

К высокотемпературному классу относятся гидротермальные месторождения молибдена, вольфрама, олова. Они тяготеют к апикальным частям гранитных массивов, часто сопряжены околорудными ореолами грейзенизации.

Среднетемпературные гидротермальные месторождения характерны для многих полезных ископаемых: меди, свинца и цинка, висмута, золота, кобальта и др. В большинстве случаев эти месторождения не тяготеют к выходам гранитных батолитов. Их пространственное положение определяется крупными разрывными нарушениями, местами их пересечений или изгибов, ответвлениями боковых разрывных нарушений, связью со штоками и дайками малых интрузий кислого и среднего состава. Ряд месторождений пространственно связан с вулканическими постройками, и рудные тела залегают в различных эффузивных породах и туфах.

Генетическая классификация гидротермальных месторождений (по В.И.Смирнову) включает плутоногенно-гидротермальные, вулканогенно-гидротермальные и амагматогенные месторождения, разновидностью которых являются стратиформные месторождения.

Вопрос 8. Генетические типы гидротермальных месторождений. Плутоногенные и вулканогенные гидротермальные месторождения формируются в интервале температур от 400 до 50°С. Амагматогенные относятся к низкотемпературным образованиям, пространственно не связанным с магматическими проявлениями.

Плутоногенно-гидротермальные месторождения пространственно и генетически связаны с интрузиями кислых, умеренно кислых и умеренно щелочных изверженных горных пород. Оруденение распространено по вертикали на 1-2 км и отличается хорошей выдержанностью. Рудные тела формируются путем выполнения пустот или метасоматически и характеризуются большим разнообразием форм, зависящих от состава вмещающих пород и тектонической структуры. Типичны месторождения с большим количеством маломощных рудных тел. Рудообразование сопровождается интенсивным изменением вмещающих пород (серицитизацией, хлоритизацией, окварцеванием, доломитизацией, лиственитизацией, серпентинизацией, флюоритизацией, пиритизацией, гематитизацией). Текстуры руд - вкрапленные, прожилковые массивные, структуры – зернистые, порфировидные, эмульсионные, пластинчатые, сетчатые. Примерами являются:

· золото-кварцевые, золото-сульфидно-кварцевые месторождения, обычно связанные с массивами гранитоидов, сопровождающихся сериями даек (Бендиго в Австралии, Березовское на Урале);

· вольфрамит-молибденит-кварцевые месторождения, представленные крутопадающими жилами, трубообразными телами, штокверками, которые локализуются в куполах гранитоидов и зонах их контактов (Джида, Шахтама в Забайкалье, Вехнее Кайракты в Казахстане);

· касситерит-кварцевые месторождения, залегающие среди песчаников и сланцев в экзоконтактах гранитных интрузивов; вкрапленные, прожилковые и массивные руды образуют жиды заполнения, штокверки (Онон в Забайкалье, Иультин на Чукотке);

· молибденит-халькопиритовые (медно-порфировые) месторождения, формирующие штокверки и прожилково-вкрапленные зоны рассеянного оруденения близ выступов магматических гранитоидных пород порфирового строения (Коунрад в Казахстане, Каджаран в Армении, Кляймакс в США, Чукикамата в Чили);

· касситерит-силикатно-сульфидные месторождения, ассоциирующие с дайками среднего состава и приуроченные к разломам и зонам трещиноватости в них; вмещающими породами являются песчаники, глинистые сланцы, эффузивы; формы рудных тел – жилы,; текстуры руд – вкрапленные, прожилковые массивные (Депутатское в Якутии);

· галенит-сфалеритовые (полиметаллические) жильные месторождения (Садон, Згид на Кавказе);

· хризотил-асбестовые связаны с серпентизированными ультраосновными породами; текстуры – прожилковые, поперечно- и продольно-волокнистые (Баженовское, Алапаевское на Урале).

Вулканогенно-гидротермальные месторождения связаны преимущественно с наземным андезит-дацитовым вулканизмом в складчатых областях, а также трапповым магматизмом активизированных платформ. Наиболее характерны месторождения, приуроченные к жерлам вулканов и их периферии. Месторождениям свойственны конические, кольцевые, трубчатые, внутри жерловые и радиально-трещинные структуры, а также зоны напластования эффузивных пород. Рудные тела – жилы, трубы и штокверки, которые быстро выклиниваются на глубине 300-500м. Характерен сложный минеральный состав, неравномерное распределение рудных компонентов (столбы, бонанцы). Текстуры – метаколлоидные. Обычны гидротермальные изменения: окварцевание, пропилитизация, алунитизация, каолинизация. Примеры месторождений:

· магнетитовые месторождения, связанные с траппами и приуроченные к штокам габброидов и вулканическим трубкам взрыва; они залегают среди карбонатных и песчано-сланцевых пород, скарнированных траппов,образуют жилы, штоки, штокверковые зоны (Коршуновское, Нерюндинское в Восточной Сибири);

· золото-серебряные месторождения, ассоциирующие с субвулканическими интрузивами кварцевых порфиров, размещающиеся среди андезит-дацитовых пород и представляющих собой пучки жил, прорезающих вулканические жерла (Балей в Забайкалье, Агинское на Камчатке, Крипл-Крик, Комсток в США);

· Киноварные (ртутные) месторождения, пространственно и генетически связанные с четвертичным вулканизмом кислого и среднего состава; их размещение контролируется сопряжением разломов, экструзивов, зон брекчирования; руды вкрапленные, выполняют трещины в зонах дробления (Пламенное на Чукотке, Боркут в Закарпатье);

· Месторождения самородной серы, обычно приуроченные к склонам, подножьям, кальдерам стратовулканов или межвулканическим впадинам; рудоносными являются вулканические породы, првращенные под действием сернокислых растворов во вторичные кварциты, содержащие вкрапленность серы (месторождения Камчатки –Новое, Заозерное, а также Японии, Чили, Перу, Филлипин).

Амагматогенные гидротермальные месторождения располагаются в осадочных толщах, где отсутствуют массивы изверженных пород, которые могли бы служить источником гидротермальных минерализованных растворов. Генезис таких месторождений всегда проблематичен. Некоторые геологи рассматривают эти месторождения как первично-осадочные сингенетические, претерпевшие некоторые изменения на последующих стадиях. Существует также представление и об их связи с залегающими на глубине и не вскрытыми эрозией массивами изверженных горных пород. Таким образом, источником растворов таких месторождений могут быть удаленные магматические очаги, с которыми потеряна связь, а также собственные флюиды осадочно-породных бассейнов, мобилизирующиеся из осадочных толщ при катагенезе, метаморфизме. Источник рудного вещества также чаще ассимилированный из вмещающих толщ, но может быть и глубинным (например, для ртути, сурьмы). Наиболее часто рассматривается полигенное происхождение таких месторождений в течение длительного периода.

Среди аматогенных гидротермальных месторождений особо выделяется группа стратиформных месторождений, имеющих гидротермально-осадочное происхождение (они будут рассматриваться в лекции 17): месторождения медистых песчаников (Джезказган в Казахстане), стратиформные полиметаллические в карбонатных формациях (Миргалимсай в Казахстане, Миссисипи – Миссури в США).

Примером амагматогенных гидротермальных месторождений являются киноварь-антимонитовые (сурьмяно-ртутные) месторождения. Они залегают среди терригенных и карбонатных комплексов, осложненных куполовидными, сундучными складками, рудоподводящими разрывными нарушениями. Для них не выявлена связь с магматизмом, но имеются все характерные признаки низкотемпературных гидротермальных жильных образований. Такие месторождения распространены в Средней Азии (Хайдаркан, Кадамджай), на Украине (Никитовское в Донбассе), в Испании (Альмаден).

Литература: [1], с. 129-172; [2] с. 131-182; [3], с. 119-153





Дата публикования: 2014-11-28; Прочитано: 3928 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.014 с)...