Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Марганець



Марганець належить до металів із змінною валентністю (Mn 2+, Mn 4+, Mn 7+), що визначає його участь у окиснювано-відновних реакціях ключових метаболічних процесів. У поверхневі води він надходить внаслідок вимивання з грунту та мінералів, особливо залізо-марганцевих руд. Надходить також із стічними водами марганцевих гірничозбагачувальних комбінатів, металургійних заводів та інших підприємств.

Формування вмісту марганцю у поверхневих водах пов’язано з його привнесенням з підземним стоком та змивом з водозбірної площі. У його кругообігу у водних екосистемах важливу роль відіграють органічні речовини рослинного і тваринного походження.

У континентальних і морських водах марганець зустрічається у розчиненій, завислій і колоїдній формах. Верхній Дніпро та його притоки (особливо Прип’ять) несуть значну кількість розчинених форм марганцю, частина яких, адсорбуючись на зависі, осідає у Київському водосховищі. У розчинених формах марганець частіше зустрічається в ступені окиснення +2, а в +4 – у формі завислих частинок. При високій концентрації у воді гідрокарбонат-іонів (НСО3 ) або сульфат-іонів (SO4 –2) певна частина розчиненого марганцю може знаходитись у комплексних сполуках. Він може утворювати комплекси з фосфат-іонами та деякими органічними лігандами.

У поверхневих водах марганець в ступені окиснення +2 термодинамічно нестабільний і легко окиснюється, перетворюючись в діоксид марганцю (MnO2) та інші оксиди. У річковій воді міграція Mn 2+ відбувається переважно в складі завислих форм. Так, до зарегулювання Дніпра, на них припадало близько 81 %, а у Прип’яті – 73 % від його загальної концентрації у воді. Як завислі форми марганцю можна розглядати його вміст у клітинах водоростей, з якими він може мігрувати, а також адсорбований на оксиді заліза, глинистих частинках та інших органічних і неорганічних субстратах.

Розчинені форми марганцю – це в основному його комплексні сполуки з органічними речовинами різної молекулярної маси, зокрема з гуміновими і фульвокислотами. Вони становлять лише 2–27 % загальної кількості розчиненого марганцю. У порівнянні з іншими металами, комплекси марганцю з речовинами гумусової природи не відзначаються високою стабільністю. За кількістю зв’язаного з органічними речовинами металу марганець займає останнє місце серед найбільш поширених у природних водах мікроелементів (Cu 2+ > Nі 2+ > Co 2+ > Zn 2+ > Mn 2+). Співставлення різних форм марганцю в річкових водах свідчить про те, що він може взаємодіяти, утворюючи комплексні сполуки, з гуміновими, фульвокислотами та органічними речовинами.

У водах Київського водосховища та поблизу гирла Десни розчинені форми марганцю представлені комплексними сполуками з молекулярною масою > 120–150 тис.; 60–70 тис. та 0,5–5 тис. а.о.м. У деснянській воді переважають комплекси марганцю з органічними речовинами, молекулярна маса яких коли­вається в межах 0,5–5 тис. а.о.м.. Найменша кіль­кість закомплексованого мар­ган­цю виявляється у зимово-весняний період, а в літньо-осінній – закомплексо­вані форми за концентрацією переважають гідратовані (вільні) іони Mn 2+.

Серед органічних речовин, з якими марганець утворює комплекси, переважають гумусові речовини. Комплексоутворення алохтонного марганцю у водосховищах в літньо-осінній період відбувається в два рази швидше, ніж у зимово-весняний. При зменшенні швидкості течії марганець поступово переміщується в донні відклади. В каскаді дніпровських водосховищ найбільше марганцю акумулюється в Кременчуцькому та нижче розташованих водосховищах. В найбільш теплі літні місяці, в періоди “цвітіння” води вміст марганцю в сестоні (планктон разом з завислими і відмерлими частинками) майже на чотири порядки перевищує його концентрацію у воді. Внаслідок біологічного засвоєння вміст марганцю у воді в цей час може знижуватись до 5–8 мкг/дм3. З наближенням осені, коли водорості починають відмирати, а деструктивні процеси переважають над продукційними, його вміст у воді зростає.

Процес трансформації розчинених форм Mn 2+ у важкорозчинні внаслідок адсорбції та окиснення та їх седиментація призводять до поступового зменшення його концентрації у воді. В той же час у міру накопичення марганцю в донних відкладах при дефіциті кисню розпочинається його міграція з донних відкладів у товщу води. Особливо інтенсивно відбувається цей процес взимку, в підлідний період.

Концентрація марганцю найвища у воді Київського, Канівського і Кременчуцького водосховищ (табл. 14). Особливо зростає його вміст у цих водосховищах в зимовий період, коли збільшується його надходження з приток та вихід з донних відкладів.

Таблиця 14

Вміст марганцю у воді і донних відкладах деяких водних об’єктів України

Водні об’єкти Вода (мкг/дм3) Донні відклади на глибині 0–5 см (г/кг сухої маси)
Дністер    
Верхній Дністер 0,0–6,3  
Дністровське водосховище 10,9 0,36–0,69
Середній Дністер 5,6–86,0 0,22
Дубосарське водосховище 4,0–24,0 0,20–0,32
Нижній Дністер 4,0–21,0 0,16–0,46
Гирло Дністра 43,0–228,0  
Водосховища Дніпра    
Київське 8,0–495,0 0,90–3,40 (1,40)
Канівське 21,5–340,0  
Кременчуцьке 11,6–640,0 0,90–2,60 (1,10)
Запорізьке 4,5–225,0 1,80–2,9 (1,70)
Лимани    
Дніпровсько-Бузький 15,0–160,5 0,80–1,60 (1,20)
Дністровський 16,5–163,0  
Річки    
Дунай (Кілійська дельта) 14,3–720,0  

Примітка. Вказані граничні величини; в дужках – середні концентрації.

Таблиця складена за даними П.М. Линника (1999), С.Й. Кошелевої, К.М. Цапліної (1998).

У морській і океанічній воді також існують розчинені та завислі форми марганцю, причому ближче до місць впадіння річок вміст марганцю вищий, ніж на основній акваторії. За наростаючою концентрацією марганцю водні об’єкти розподіляються в такий ряд: океан – моря – естуарії – річки. При впадінні річкових вод у естуарії (лимани) внаслідок зменшення швидкості течії відбувається інтенсивне осадження завислих форм марганцю. Через це вміст його завислих форм у таких водах спадає в десятки разів. У контактній зоні річкових і морських вод більш інтенсивно розвиваються планктонні організми, які також накопичують марганець, і це ще істотніше зменшує його концентрацію в морській воді. Концентрація марганцю в річковій воді в середньому становить близько 53 мкг/дм3, а в естуаріях вона знижується до 2,5, в морях – до 0,8, в океані – до 0,43 мкг/дм3.

Марганцю належить важлива роль у багатьох реакціях, які відбуваються в організмі гідробіонтів. Він є одним з ключових елементів при окисненні води в процесах фотосинтезу та утилізації вуглецю з СО2 в реакціях карбоксилювання в зелених рослинах. Марганець входить до складу багатьох ферментних систем, з якими пов’язана регуляція тканинного дихання та біосинтез білків, ліпідів, полісахаридів (глікоген) у водяних тварин.

Гідробіонти отримують марганець з води та кормових об'єктів. Існує вибіркова здатність окремих систематичних груп водяних організмів до його акумуляції. Серед макрофітів найвищий вміст марганцю виявлено у сальвінії плаваючої (4790–9347 мг/кг сухої маси), а найменше накопичує його очерет звичайний (91–852 мг/кг сухої маси). В обміні марганцю у риб існують видоспецифічні особливості. Так, у хрящових риб (осетрових) його концентрація в печінці значно вища, ніж у костистих (лящ, сазан). Існує різниця і між різними органами і тканинами організму. Так, наприклад, у осетрів в м'язах вміст марганцю становив 0,48–1,12, у крові –5,4–8,7, а в печінці – 111–133 мг/кг сухої маси. Схожі результати отримано щодо білуги і севрюги. В печінці ляща марганцю припадає не більше 15,7–19,5 мг на 1 кг сухої маси, а у сазана – 16,5–24,9 мг. В крові сазана ці величини відповідно становлять у літньо-осінній період 4,07–4,73, в зимово-весняний – 2,01–2,60 мг/кг сухої маси.

В тілі морських риб вміст марганцю менший, ніж у річкових. Існує певна залежність між концентрацією марганцю у водному середовищі і його вмістом у крові і тканинах риб. Найбільше його виявляється у напівпрохідних, дещо менше – у морських і найменше – у океанічних риб. Стосовно м’язів ці величини характеризуються такими цифрами: 2,0 – 1,8 – 0,4 мг на 1 кг сухої маси відповідно.

Біологічна активність марганцю у водних екосистемах залежить від рН середовища, наявності органічних та інших комплексоутворюючих речовин, концентрації завислих компонентів та окиснювано-відновної характеристики вод. Тому оцінювати роль марганцю у водоймах можна лише з урахуванням цих факторів. На відміну від інших мікроелементів, він має відносно невеликі показники ступеня закомплексованості. В той же час марганець в процесі окиснення та адсорбції на завислих частинках переходить у форми, які накопичуються у донних відкладах, обумовлюючи тим самим вторинне забруднення водойм.

Значне зростання концентрації марганцю у воді періодично спостерігається у Київському, Канівському, Кременчуцькому та інших водосховищах в зимовий період, коли різко знижується насичення води киснем. У таких випадках вихід марганцю з донних відкладів значно погіршує якість води в них, що особливо небезпечне для питного водопостачання. Тому врахування комплексу факторів, які обумовлюють стан марганцю у водоймах, є необхідною умовою для оцінки стану водних екосистем.

Цинк

В природі існує п’ять стабільних ізотопів цинку, серед них найбільше припадає на 64 Zn (8,89 %) і 66 Zn (27,81 %). Серед дев'яти радіоактивних ізотопів найбільше біологічне значення має 65 Zn з періодом напіврозпаду 245 діб. У сполуках цинк проявляє ступінь окиснення +2, а як відновник легко заміщує у розчинах Fe, Cu, Nі, Co та інші елементи. За розчинністю у воді Zn наближається до заліза та міді, але він більш рухливий у зв’язку із більшою розчинністю його оксидів і гідроксидів. Сполуки цинку за розчинністю розташовуються у такій послідовності: найлегше розчинні ZnSO4 і ZnCl2, значно менш розчинним є його карбонат (ZnCO3), а до слаборозчинних належать фосфат (Zn3(PO4)2 та сульфід цинку (ZnS). Для природних вод найбільш характерними є його гідроксокомплекси [ZnOH]+ та в меншій мірі – [Zn(OH)2]o.

Серед мінералів, до складу яких входить цинк, найбільш поширені в природі сульфід цинку (сфалерит) та смітсоніт, що містить до 65 % цинку. Джерелами надходження цинку в гідросферу є океанічні залізо-магнієві конкреції та донні осади вулканічного походження. Тільки за рахунок гідротермічних процесів, пов’язаних з океанічною вулканічною діяльністю, в гідросферу надходить в середньому 4×1017 г/рік цинку, або приблизно його щорічного надходження з річковим стоком.

У грунтах цинк легкорухливий, але при міграції він досить швидко сорбується органічними та мінеральними речовинами, до складу яких входить алюміній, залізо, кремній, марганець та інші елементи. Саме висока сорбційна здатність деяких речовин грунту стосовно цинку визначає його найбільший вміст у верхньому (приповерхневому) шарі грунту. У грунтах цинк знаходиться у різних формах: він може входити до складу слаборозчинних оксосульфатів, карбонатів, фосфатів, силікатів та інших сполук, утворює комплекси з гуміновими та фульвокислотами. У кислих грунтах розчинність Zn вища, ніж у нейтральних і лужних. При високому вмісті в грунті фульвокислот та гліцину його розчинність падає. Ці чинники впливають на надходження Zn з водозбірної площі у водні об'єкти.

Значна кількість цинку надходить у водні об'єкти з техногенними забрудненнями. Так, у залізорудних магнетитових родовищах його вміст у хвостосховищах протягом року досягає 4 тис. т за рік. У грунтах навколо фабрик по збагаченню поліметалевих руд його вміст досягає 0,3 %. Істотні джерела надходження цинку у водні об'єкти – рудникові змивні води та стічні води гальванічних цехів, виробництв паперу, лаків і фарб, хімічних засобів захисту рослин, комбінатів кольорової металургії та теплових електростанцій, які працюють на кам’яному вугіллі.

У поверхневих водах суші вміст цинку оцінюється в мікрограмах на 1 л води (мкг/дм3). Його вміст у воді і грубодетритному мулі має тенденцію до збільшення від гумідних до аридних ландшафтних зон. Дані щодо вмісту цинку у воді і донних відкладах деяких водойм України наведені у табл. 15.

Таблиця 15

Вміст цинку у воді і донних відкладах деяких водних об'єктів України

Водні об'єкти Вода (мкг/дм3) Донні відклади на глибині 0–5 см (мг/кг сухої маси)
Дністер    
Дністровське водосховище 102,7–228,8 72,5–75,0
Середній Дністер 78,4–94,9 47,5
Дубосарське водосховище 17,5–78,9 47,5–62,5
Нижній Дністер 23,0–162,0 37,5–102,5
Гирло Дністра 9,4–158,5
Водосховища Дніпра    
Київське 7,5–72,8 43,6–105,8 (54,9)
Канівське 9,6–94,4  
Кременчуцьке 14,9–128,6 48,2–91,6 (67,5)
Запорізьке 6,4–176,8 90,6–186,5 (104,8)
Лимани    
Дніпровсько-Бузький 16,5–175,0 64,5–155,0 (81,3)
Дністровський 10,3–145,0
Річки    
Дунай (Кілійська дельта) 10,2–173,0

Примітка. Вказані граничні величини; в дужках – середні концентрації.

Таблиця складена за даними П.М. Линника (1999), С.Й. Кошелевої, К.М. Цапліної (1998).

У воді цинк знаходиться у розчинній формі та у складі завислих частинок органічного і мінерального походження. У річок, які формують водність Київського водосховища, завислі форми Zn становлять 50–90 % його загального вмісту, з них до 30–40 % поступово осідає на дно і накопичується в донних відкладах. На співвідношення окремих форм цинку у воді впливає вміст та комплексоутворююча здатність органічних та мінеральних сполук, що надходять у водойми з водозбірної площі. Так, у річковому стоку р. Прип’ять на розчинені форми припадає 77,5 %, у верхньому Дніпрі – 40, в р. Тетерів – 54 %. У Десні, навпаки, до 70 % цинку припадає на його завислі форми, тобто на комплекси з органічними і мінеральними речовинами.

Каскадне розташування дніпровських водосховищ зумовлює поступове випадіння (седиментацію) завислих форм цинку, що і визначає зростання його концентрації у донних відкладах від верхнього Київського до нижче розташованого Канівського водосховища. У процесах сорбції цинку важливу роль відіграють гідробіонти. Планктонні організми можуть абсорбувати до 40–48 % розчиненого у воді цинку. Для порівняння відзначимо, що гідратовані частинки оксиду заліза адсорбують на собі до 95 %, апатиту – 86, глини і торфу до 99 % цинку.

Вміст цинку у океанічних і морських водах значно менший, ніж у річкових. Для океанічних вод середній вміст цинку оцінюється в 7,6 мкг/дм3, в тому числі 7,0 мкг/дм3 розчинених і 0,6 мкг/дм3 завислих форм. Для морських вод ці показники дещо вищі. При загальній концентрації 11,0 мкг/дм3 на розчинені форми припадає 10, а на завислі – 1,0 мкг/дм3. У формуванні мікроелементного складу морських вод виняткова роль належить річковому стоку. Це чітко виявляється при співставленні вмісту цинку у річковій і морській водах, а також у воді естуаріїв, до яких надходить річковий стік. Так, вміст цинку у воді гирлових ділянок річок становить у середньому 90 мкг/дм3. При переході в естуарії або затоки внаслідок зменшення швидкості течії і різкого прискорення седиментації загальна концентрація цинку у воді знижується до 14,3 мкг/дм3, а у прилеглій акваторії моря вона зменшується ще в 2—3 рази. Це один із суттєвих чинників, який обумовлює значно меншу концентрацію не тільки цинку, а й інших мікроелементів (мідь, марганець) у морських (океанічних) водах у порівнянні з річковими.

У процесах, пов’язаних з кругообігом цинку у водних екосистемах, важлива роль належить гідробіонтам. Їх здатність до акумуляції цього металу давно цікавить вчених з точки зору можливості їх використання як показників (моніторів) забруднення водойм і водотоків. Встановлено, що водяні рослини і безхребетні накопичують у своєму тілі значну кількість мікроелементів в умовах, коли їх вміст у воді має лише слабко виявлену тенденцію до зростання.

Так, наприклад, на р. Усмань (Воронізький біосферний заповідник), при досить незначних (12,3 %) змінах концентрації цинку у воді між найбільш чистою південною і більш забрудненою північною частинами річки, накопичення металу в рослинах виявлялося набагато більшим. Різниця вмісту цинку в сестоні на цих ділянках становила 41,7 %, а у вищих водяних рослин вміст цинку з чистої і забрудненої ділянок відрізнявся на 110 %. У двостулкового молюска кульки рогової (Sphaerіum corneum), відібраних із цих ділянок ріки, різниця вмісту цинку у м’яких тканинах становила 85 %. Ще у більшій мірі виявлялась різниця у накопиченні цього елементу у черевоногих молюсків – звичайного ставковика (Lіmnaea stagnalіs) – 100 % і котушки роговидної (Planorbarius corneus) – 160 %.

Накопичення цинку притаманне не тільки прісноводним, а й морським (океанічним) гідробіонтам. Вміст його в океанічних організмах дещо менший в порівнянні з морськими. Так, середня концентрація цинку в морському фітопланктоні оцінюється в 90–93 мг/кг сухої маси, а в океанічному – 61 мг/кг. Така ж тенденція виявляється і у зоопланктону: в морсько­му вміст цинку становить в середньому 41 мг/кг, а в океанічному – 36 мг/кг сухої маси.

Здатність водяних рослин до накопичення цинку пов’язана з особли­востями його біологічної дії. Він впливає на ключові реакції фотосинтезу. Відома його роль у перетворенні сполук, які містять сульфгідрильні групи, в забезпеченні синтезу нуклеїнових кислот і білків. Поряд з іншими елементами цинк приймає участь у регуляції синтезу крохмалю та в інших реакціях, пов’язаних з вуглеводним та фосфорним обміном у рослин. У водяних тварин цинк входить до складу карбоангідрази, яка каталізує реакцію дегідратації вугільної кислоти. Він активує ферментативну активність кишкової інвертази, амілази і пептидази у риб. При збільшенні концентрації цинку у воді до 0,1 мг/дм3 активується синтез РНК і ДНК в печінці, кишечнику і м’язах риб. Більш високі концентрації пригнічують синтез нуклеїнових кислот. Відомий вплив цинку на окиснювано-відновні процеси, на зв’язування кисню тканинами.

Як і інші мікроелементи, цинк у великих концентраціях може ставати токсичним, що виявляється в порушенні передачі нервових імпульсів, гальмуванні рухливості риб та інших функціональних порушеннях соматичних органів. Токсична дія розчиненого у воді цинку залежить як від його концентрації, так і від наявності інших хімічних елементів у воді. Так, в присутності кадмію і міді у воді токсичність цинку для риб зростає, і, навпаки, у воді, насиченій кальцієм і магнієм, для прояву токсичної дії необхідні значно більш високі його концентрації.

На відміну від водяних рослин і безхребетних, у риб висока акумулятивна здатність до накопичення цинку в організмі не виявлена. Відмічається лише різниця у вмісті цинку між окремими органами і тканинами. Найбільше його виявляється, крім кісткової тканини, у лусці (118–10 мг/кг). При цьому характер живлення риб не впливає на тканинний розподіл цинку. Так, у чехоні, яка є планктофагом і в меншій мірі хижаком, його середній вміст у м’язах становить 63 мг/кг сухої маси. У бентофагів плітки і ляща ці показники були відповідно 134 і 73,3 мг/кг; у окуня (мішаний тип живлення) вміст цинку в м’язах 102 мг/кг сухої маси. У типових хижаків – судака (84 мг/кг) і щуки (125 мг/кг сухої маси) рівень цинку у м’язах схожий з такими ж величинами у бентофагів.

Серед залозистих органів риб найбільш високим вмістом цинку виділяється печінка. У печінці осетра його вміст становить 157, білуги – 203 і севрюги – 246 мг/кг сухої маси. Вміст цинку у ляща дещо менший – 139–158 мг/кг сухої маси. Значно більш високий вміст цинку характерний для сазана. У нього в усіх органах і тканинах виявлено в 5–8 разів більше цинку, ніж у інших костистих риб.

На різних стадіях розвитку риб вміст цинку в їх організмі може істотно змінюватися. Наприкінці кожного з періодів розвитку (ембріонального, личинкового, малькового) зростає його вміст як в окремих органах, так і в організмі в цілому. У личинок його більше, ніж в ікрі, що розвивається. Це ще раз підтверджує важливу метаболічну роль цинку в життєдіяльності риб. Відомо, що в личинковий період розвитку у риб різко зростає потреба не тільки у макроелементах, а й в мікроелементах, зокрема в цинку. Він в більшій кількості потрібен для формування кісткового скелету, плавців, луски; як активатор лужної фосфатази, цинк необхідний для синтезу і активації цинкмістких ферментів, що забезпечують процеси тканинного дихання, які у період раннього онтогенезу риб відбуваються досить інтенсивно. Саме це і визначає більш високу акумулюючу здатність організму риб на ранніх стадіях розвитку (личинки, мальки), для яких характерний і більш чітко виявлений вплив характеру живлення на акумуляцію цинку в організмі, ніж у дорослих риб. З віком подовжуються трофічні ланцюги і змінюється сам характер живлення молоді. Наприклад, сазан і лящ поступово переходять до придонного способу життя і починають живитися бентосними організмами, які містять менше цинку та інших мікроелементів (залізо, марганець), ніж планктонні. Все це і визначає вікову динаміку змін вмісту цинку в організмі риб на різних стадіях онтогенезу.





Дата публикования: 2014-11-28; Прочитано: 758 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.01 с)...