Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Эйлерова цепь



Маршрут в неографе, в котором все ребра разные, называется цепью. Цепь в графе называется эйлеровой, если она содержит все ребра и все вершины графа.

Рис. 12.4. Схема Кенигсбергских мостов

Теория графов многократно переоткрывалась разными авторами при решении различных прикладных задач. В их ряду – знаменитый математик Леонард Эйлер (1707-1783). К созданию теории графов его подтолкнула задача о Кенигсберских мостах, которую он решил в 1736 году. По условию задачи требовалось пройти по всем семи мостам города Кенигсберга через реку Преголь по одному разу и вернуться к исходной точке. На рис. 12.4 показана схема этих мостов (один из них соединяет между собой два острова, а остальные – острова с берегами). Этой схеме соответствует приведенный на следующем рисунке мультиграф с четырьмя вершинами.

Рис. 12.5

Эйлер решил задачу о Кенигсбергских мостах в отрицательном смысле. Он доказал, что данная задача не имеет решения. Для этого ему пришлось доказать следующую теорему.

Теорема 12.5 (Эйлера). Мультиграф обладает эйлеровой цепью тогда и только тогда, когда он связен и число вершин нечетной степени равно 0 или 2.

Вершины нечетной степени в этой теореме, очевидно, являются началом и концом цепи. Если таких вершин нет, то эйлерова цепь становится эйлеровым циклом. Граф, обладающий эйлеровым циклом, называется эйлеровым. Если граф имеет эйлерову цепь, но не обладает эйлеровым циклом (число вершин нечетной степени равно 2), то он называется полуэйлеровым графом.

Предположим, что граф имеет эйлеров цикл. Двигаясь по нему, будем подсчитывать степени вершин, полагая их до начала прохождения нулевыми. Прохождение каждой вершины вносит 2 в степень этой вершины. Поскольку эйлеров цикл содержит все ребра, то когда обход будет закончен, будут учтены все ребра, а степени вершин – четные.

Все четыре вершины мультиграфа, показанного на рис. 12.5, имеют нечетные степени. Поэтому этот граф не обладает эйлеровым циклом, а задача о Кенигсбергских мостах не имеет решения.

Рассмотрим для сравнения граф, обладающий эйлеровой цепью. В графе на рис. 12.6 только две вершины имеют нечетную степень, следовательно, эйлерова цепь есть.

Рис. 12.6

Цепей может быть несколько. Например, граф на рис. 12.6 имеет две эйлеровы цепи: 1-2-3-4-1-3 и 1-2-3-1-4-3.





Дата публикования: 2014-11-28; Прочитано: 1657 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...