Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Особенности нейрокомпьютеров можно свести к следующему:
1. Нейрокомпьютеры дают стандартный способ решения многих нестандартных задач. И неважно, что специализированная машина лучше решит один класс задач. Важнее, что один нейрокомпьютер решит и эту задачу, и другую, и третью – и не надо каждый раз проектировать специализированную ЭВМ – нейрокомпьютер сделает все сам и не хуже.
2. Вместо программирования – обучение. Нейрокомпьютер учится – нужно только формировать учебные задачники. Труд программиста замещается новым трудом – учителя (тренера). Программист предписывает машине все детали работы, учитель – создает «образовательную среду», к которой приспосабливается нейрокомпьютер. Появляются новые возможности для работы.
3. Нейрокомпьютеры особенно эффективны там, где нужно подобие человеческой интуиции – для распознавания образов (узнавания лиц, чтения рукописных текстов), перевода с одного естественного языка на другой и т.п. Именно для таких задач обычно трудно сочинить явный алгоритм.
4. Гибкость структуры: можно различными способами комбинировать простые составляющие нейрокомпьютеров – нейроны и связи между ними. За счет этого на одной элементной базе и даже внутри «тела» одного нейрокомпьютера можно создавать совершенно различные машины. Появляется еще одна новая профессия – «нейроконструктор» (конструктор мозгов).
5. Нейронные сети позволяют создать эффективное программное обеспечение для высокопараллельных компьютеров. Для высокопараллельных машин хорошо известна проблема: как их эффективно использовать – как добиться, чтобы все элементы одновременно и без лишнего дублирования вычисляли что-нибудь полезное? Создавая математическое обеспечение на базе нейронных сетей, можно для широкого класса задач решить эту проблему.
Если перейти к еще более прозаическому уровню повседневной работы, то нейронные сети – это всего-навсего сети, состоящие из связанных между собой простых элементов – формальных нейронов. Значительное большинство работ по нейроинформатике посвящено переносу различных алгоритмов решения задач на такие сети.
Ядром используемых представлений является идея о том, что нейроны можно моделировать довольно простыми автоматами, а вся сложность мозга, гибкость его функционирования и другие важнейшие качества определяются связями между нейронами. Каждая связь представляется как совсем простой элемент, служащий для передачи сигнала. Предельным выражением этой точки зрения может служить лозунг: «структура связей – все, свойства элементов – ничто».
Совокупность идей и научно-техническое направление, определяемое описанным представлением о мозге, называется коннекционизмом (по-английски connection – связь). Как все это соотносится с реальным мозгом? Так же, как карикатура или шарж со своим прототипом-человеком – весьма условно. Это нормально: важно не буквальное соответствие живому прототипу, а продуктивность технической идеи.
С коннекционизмом тесно связан следующий блок идей:
1. однородность системы (элементы одинаковы и чрезвычайно просты, все определяется структурой связей);
2. надежные системы из ненадежных элементов и «аналоговый ренессанс» - использование простых аналоговых элементов;
3. «голографические» системы – при разрушении случайно выбранной части система сохраняет свои полезные свойства.
Предполагается, что система связей достаточно богата по своим возможностям и достаточно избыточна, чтобы скомпенсировать бедность выбора элементов, их ненадежность, возможные разрушения части связей.
Коннекционизм и связанные с ним идеи однородности, избыточности и голографичности еще ничего не говорят нам о том, так же такую систему научить решать реальные задачи. Хотелось бы, чтобы это обучение обходилось не слишком дорого.
На первый взгляд кажется, что коннекционистские системы не допускают прямого программирования, то есть формирования связей по явным правилам. Это, однако, не совсем так. Существует большой класс задач: нейронные системы ассоциативной памяти, статической обработки, фильтрации и др., для которых связи формируются по явным формулам. Но еще больше (по объему существующих приложений) задач требует неявного процесса. По аналогии с обучением животных или человека этот процесс мы также называем обучением.
Обучение обычно строится так: существует задачник – набор примеров с заданными ответами. Эти примеры предъявляются системе. Нейроны получают по входным связям сигналы – «условия примера», преобразуют их, несколько раз обмениваются преобразованными сигналами и, наконец, выдают ответ – также набор сигналов. Отклонение от правильного ответа штрафуется. Обучение состоит в минимизации штрафа как (неявной) функции связей.
Неявное обучение приводит к тому, что структура связей становится «непонятной» - не существует иного способа ее прочитать, кроме как запустить функционирование сети. Становится сложно ответить на вопрос: «Как нейронная сеть получает результат?» - то есть построить понятную человеку логическую конструкцию, воспроизводящую действия сети.
Это явление можно назвать «логической непрозрачностью» нейронных сетей, обученных по неявным правилам. В работе с логически непрозрачными нейронными сетями иногда оказываются полезными представления, разработанные в педагогике и психологии, и обращение с обучаемой сетью как с дрессируемой зверушкой или с обучаемым младенцем – это еще один источник идей. Возможно, со временем возникнет такая область деятельности – «нейропедагогика» - обучение искусственных нейронных сетей.
Дата публикования: 2014-11-28; Прочитано: 258 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!