Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Наследственность и инфекция. Горизонтальный перенос и симбиоз



По удивительному совпадению практически одновременно в 1953 г. были сделаны два открытия, определившие лицо современной молекулярной и общей генетики: открытие двойной спирали ДНК Дж. Уотсоном и Ф. Криком и концепция лизогении у бактерий, созданная Андрэ Львовым.

Для эволюционной генетики открытие Андрэ Львова, на мой взгляд, имеет не меньшее значение, чем открытие двойной спирали ДНК. Андрэ Львов установил, что в ходе взаимодействия фаг лямбда — кишечная палочка, фаг может встраиваться в хромосому бактерии и передаваться в ряду поколений как ее генетический элемент. Бактерия, включившая фаг в свой геном, называется лизогенной, а встроенный фаг — профагом. Фаги, способные переходить в латентное интегрированное в геном состояние, называются умеренными. Встроив фаг в свой геном, бактерия приобретает иммунитет к заражению. В некоторых случаях состояние лизогении влечет за собой приобретение признаков вполне посторонних, например, изменение вида колоний или изменение поверхностных антигенов (конверсия штаммов).

Небольшой исторических экскурс показывает, сколь революционным было открытие Андрэ Львова. Уже с начала 20-х годов были известны штаммы, способные нести фаги в скрытом состоянии и вызывать лизис у чувствительных штаммов. Однако открыватель бактериофагов Феликс Д'Эррель (1873–1949) смотрел на фаг или вирус как облигатно летальный для клетки агент. Он считал, что культуры лизогенных бактерий просто загрязнены фагом, и от него можно избавиться путем очистки.

Взгляд на лизогению как на "артефакт" разделяли и исследователи школы классика генетики микроорганизмов М. Дельбрюка. Выше уже упоминалась причина. Эти исследователи работали с так называемыми Т-фагами, которые не способны вызвать лизогенное состояние. В силу авторитета школы М. Дельбрюка лизогенией долго скрупулезно никто не занимался. Андрэ Львов после войны возобновил в Пастеровском институте исследования на лизогенном штамме бактерии, и уже в 1953 г. создал стройную теорию лизогении, полностью сохранившую свое значение до настоящего времени (Lwoff, 1953; Жакоб, Вольман, 1962; Стент, Кэлинджер, 1981).

Трансформацию, трансдукцию и лизогению можно рассматривать как три разных способа "паранаследственного" приобретения новых признаков (Жакоб, Вольман, 1962, с. 48). Термин "паранаследственные" был предложен еще в 1925 г. Эженом Вольманом для обозначения явлений приобретения признаков путем заражения. В 1928 г. Эжен Вольман пришел к выводу, что "оба понятия — наследственность и инфекция, казалось бы столь различные и в каком-то смысле даже несовместимые..., при некоторых условиях почти совпадают" (Жакоб, Вольман, 1962, с. 48).

Дальнейшее расширение концептуального поля в этой области связано с работами Джошуа Ледерберга, который в 1952 году ввел понятие "плазмида". Плазмидами Д. Ледерберг предложил обозначать все внеядерные генетические элементы, способные к автономной репликации. Сюда входят вирус "сигма" у дрозофилы, "каппа-частицы" у парамеций, экзогенные вирусы. Взгляд на плазмиды как на симбионты и альтернативный взгляд на них как на составную часть генотипа, согласно Д. Ледербергу, зависит от того, насколько широко исследователь трактует границы генотипа и наследственной системы организма.

Следующий важный шаг был сделан в работах Ф. Жакоба и Э. Вольмана (1962) по изучению пола у бактерий и поведению системы фаг-бактерия. Они установили, что мужской половой тип бактерии определяется внехромосомным фактором, который может внедряться в хромосому бактерии и в 1000 раз усиливать способность к хромосомной рекомбинации этой бактерии с другими бактериями.

Поведение фага лямбда во многом напоминало поведение полового фактора бактерий. В 1958 г. Ф. Жакоб и Э. Вольман ввели термин "эписома" для обозначения генетических элементов, которые могут существовать в клетках в двух взаимно исключающих друг друга состояниях — автономном и интегрированном. К эписомам они отнесли: умеренные бактериофаги, половой фактор бактерий и факторы колициногенности, с помощью которых одни штаммы бактерий убивают другие.

Через некоторое время выяснилось, что термин эписома был ранее предложен генетиком Д. Томпсоном еще в 1931 г. для объяснения поведения некоторых мутаций дрозофилы. Томпсон допускал существование элементов, способных прикрепляться сбоку хромосомы ("почти от каждой бусинки отходят еще боковые цепочки хромосом"). Обнаружив, что термин эписома "занят", Ф. Жакоб и Э. Вольман нисколько не смутились: "В свете современных представлений о тонкой структуре генетического материала и о механизме мутации теория Томпсона представляется устаревшей. Поскольку нет необходимости сохранять за термином эписома то значение, которое ему придавал Томпсон, мы считаем возможным воспользоваться этим термином".

Но и термин эписома, стремительно ворвавшись в генетику в 60-е годы, постепенно стал уходить в тень под напором более размытого, но зато более общего термина "плазмида" (Стент, Кэлинджер, 1981). Ф. Жакоб и Э. Вольман вначале полагали, что состояния интеграции и автономное взаимно исключают друг друга. Но это оказалось справедливым лишь для узкого класса элементов. Спектр взаимопревращений и переходов факультативных элементов широк. Так, некоторые гены, входящие в состав плазмид у одних видов бактерий, у других видов обнаруживаются в интегрированном состоянии (Хесин, 1984). Мобильные элементы семейства мдг4 у дрозофилы в одно и то же время могут существовать в виде встроенных в хромосому последовательностей, в виде их кольцевых аналогов в цитоплазме и, наконец, переходить в ранг инфекционнных ретровирусов (Kim, et al., 1994). Подобная ситуация не столь необычна.

Панорама возможных взаимопревращений и взаимопереходов генетических элементов была прозорливо представлена в книге Ф. Жакоба и Э. Вольмана (1962, с. 418): "Мы приходим к заключению, что в результате определенных генетических событий могут возникать все промежуточные категории между вирусами (структуры экзогенные, инфекционные и внеядерные, т. е. принадлежащие к классу плазмид) и нормальными генетическими детерминантами клетки (структуры эндогенные, неинфекционные и интегрированные). Эписомы, следовательно, перекидывают своеобразный мост между наследственностью и инфекцией, между клеточной патологией и физиологией клетки, между ядерной и цитоплазматической наследственностью" (выделено мною — М. Г.).

"Эписомные элементы могут либо присутствовать в клетке, либо отсутствовать, находиться в хромосоме, либо в цитоплазме, быть эндогенными или экзогенными, патогенными или безвредными. Таким образом, по своим свойствам эписомы составляют категорию генетических элементов, приближающихся одновременно к нормальным структурам клетки и к внутриклеточным паразитам, к хромосомным компонентам и к цитологическим элементам" (рис. 7).

Авторы предвидели открытие эписомоподобных элементов у эукариот, прозорливо указывая в качестве их аналога на "контролирующие элементы", открытые МакКлинток. Ф. Жакоб и Э. Вольман, обсуждая взаимодействие эписом с геномом клеток хозяина, приходят к сходному с Дарлингтоном выводу, что наследственность и инфекция перестают быть несовместимыми.

С точки зрения рассмотренной здесь концепции, плазмиды представляют собой важный, но частный случай факультативных элементов генотипа. Интересно проследить воплощения или инкарнации фага лямбда в системе фаг — бактерия (Фаг-лямбда, 1975).

1. Состояние вирулентности, инфекционности — фаг проникает в клетку и приводит ее к гибели, лизису, так что из одной бактерии образуется 100–200 фаговых частиц;

2. Состояние профага — когда фаг интегрирован в хромосому, часть его генов активна и блокирует собственное размножение;

3. Облигатно-вирулентное состояние или утрата лизогенного состояния при повреждении или делеции в локусе "c1" у фага;

4. Облигатно-интегрированное в хромосому хозяина состояние при делеции локуса, контролирующего вырезание фага из ДНК хозяина;

5. Состояние плазмиды — при некоторых делециях фаг утрачивает способность образовывать белки оболочки, но сохраняет свойство репликации.

В рамках генно-инженерных работ на основе участия генома фага "лямбда" создано множество других удивительных конструкций.

6. Космиды — концевые фрагменты фага (cos-сайты), обеспечивающие упаковку в головку фага всей молекулы со встроенным посредине фрагментом чужеродной ДНК и участком репликации, взятым из бактериальной плазмиды. Такая космида при наличии целого фага-помощника способна проникать в клетку и реплицироваться в ней. В космиды упакован теперь весь разрезанный на фрагменты геном дрозофилы, а также многие части генома человека.

7. Химерный инфекционный агент, активный в отношении про- и эукариот, ДНК вируса полиомы введена в ДНК фага лямбда, и получился вирус-химера, способный вызывать лизис бактерий и рак у мышей (цит. по В. А. Кордюму, 1982, с. 224).

Рис. 7. Мутационные переходы между разными факультативными элементами и обмен генами между ними и геномом хозяина (по: Ф. Жакоб, Ф. Вольман, 1962).

Если К. Дарлингтон в середине 40-х годов высказал мысль о трудности строгого выбора между плазмагеном и вирусом, то исследования, выполненные в последующие два десятилетия утвердили эту мысль. Приведем такие примеры.

У бактерий условно выделяют штаммы мужского и женского пола. Способность мужского пола передавать часть своей ДНК и своих генов женским реципиентным штаммам зависит от факультативной F-плазмиды, которая способна к самовоспроизведению либо в автономном состоянии, либо будучи интегрирована в хромосому бактерии. Топография плазмиды в хозяйской клетке резко меняет свойство плодовитости последней и состав переносимых при конъюгации генов.

Когда плазмида встроена в геном бактерии, то способность клетки-хозяина передавать свою ДНК женским донорам возрастает в десятки раз, а сама рекомбинация происходит совершенно особым образом. F-плазмида способна включаться в хромосому клетки-хозяина в самых разных ее участках и в разной ориентации. При этом возникает большой набор штаммов с разными начальной точкой и направлениями переноса. Исключение фактора F из бактериальной хромосомы приводит к образованию различных автономных производных плазмид, несущих разные по длине фрагменты хромосомы клетки-хозяина, которые соседствовали с местом интеграции этой плазмиды. Некоторые производные варианты F-плазмиды несли в своем составе около четверти всего генома бактерии! (Стент, Кэлинджэр, 1981).

Фаг лямбда оказался подобным плазмиде плодовитости в смысле способности существовать и автономно, и во встроенном в геном состоянии. Но возможны и другие сценарии симбиоза. Фаг Р1 не интегрируется в хромосому бактерии, но стабильно сосуществует в клетках в виде низкокопийной плазмиды. Стабильность передачи в ряду поколений фага Р1 зависит от упорядоченной сегрегации по дочерним клеткам при делении бактерии. Фаг Р1 напоминает широкий класс автономных R-плазмид или плазмид резистентности, которые воспроизводятся автономно и несут в составе своей ДНК гены устойчивости к самым разным антибиотикам.

Как справедливо пишут Г. Стент и. Кэлинджэр, (1981), с эволюционной точки зрения бактериофаги можно рассматривать "как особый класс плазмид, накопивших наследственную информацию, необходимую для синтеза белковой сомы — головки фага, в которую включается генетический материал. Таким образом, эволюция фаговой ДНК привела к образованию инфекционных плазмид, которые в одеянии фаговых частиц способны переходить вне цитоплазмы и в таком виде переходить от одного хозяин к другому".

На основе подобного рода фактов Л. Маргелис (1983) развивает расширенное представление о симбиозе как разного рода ассоциаций между генетическими системами. Ассоциация понимается на трех уровнях: метаболическом, уровне генных продуктов и генетическом.

Идея симбиоза как фактора прогрессивной эволюции была высказана и обоснована русскими биологами А. С. Фаминцыным и К. С. Мережковским в начале XX в. (Л. Н. Хахина, 1979). Эта идея считалась фантастичной, до тех пор пока в 60-е годы не обнаружили ДНК в составе митохондрий и пластид. Их появление у эукариот в ходе симбиогенеза подробно аргументировано Л. Маргелис (1983). В рамках изложенного здесь взгляда на геном разные варианты внутриклеточного симбиоза могут рассматриваться в аспекте взаимодействия облигатных и факультативных компонентов Оригинальная концепция старения, основанная на переходе симбиотических отношений факультативных элементов при изменении внутриклеточной среды в диссимбиотические предложена Ю. Б. Бахтиным (1985).

Расширенное представление о геноме вносит ясность в понятие "горизонтальный перенос", с которым связан в эволюционных дискуссиях ряд недоразумений. Односторонне понимать под горизонтальным переносом лишь интеграцию чужеродных генов в хромосомы ядра. Интеграция — это частный случай переноса. О горизонтальном переносе можно говорить всякий раз, когда происходит устойчивая ассоциация двух генетических систем, например, с устойчивым размножением в цитоплазме или ядре плазмид или вирусов, что сопровождается появлением новых признаков и свойств этой ассоциации.

Типичный пример: система дрозофила и вирус "сигма". Колоссальная роль горизонтального потока генов с помощью плазмид выяснилась в связи с массовым применением антибиотиков и инсектицидов, когда человечество приступило к грандиозному эксперименту, поставленному на бактериях и насекомых. Стратегия защиты бактерий от антибиотиковой атаки человечества состояла в следующем. Гены устойчивости по одному или по нескольку сразу попадали в транспозон, а затем на плазмидах-векторах передавались вне рамок полового процесса. В природе есть громадный фонд плазмид, но сравнительно ограниченный набор генов резистентности, переносимых разными плазмида-ми (Хесин, 1984, с. 89).

Детальные наблюдения характера возникновения опосредованной плазмидами устойчивости сделаны в Японии и Англии. В 1945 г. в Японии для борьбы с дифтерией стали применять сульфаниламид. Он был высоко эффективен только первые 5 лет. Вскоре появились устойчивые штаммы дифтерийной палочки, а уже некоторое время спустя 80–90% изолятов были устойчивыми. Затем сульфаниламид заменили антибиотиками. Но уже в 1952 г. от больного дифтерией был выделен штамм дифтерийной палочки, одновременно устойчивый к тетрациклину, стрептомицину и сульфаниламиду. А в 1964 г. половина всех бактериальных штаммов, выделенных из больных дизентерией, несла гены устойчивости одновременно к четырем антибиотикам. Эти гены устойчивости были собраны в одной плазмиде, способной распространяться среди бактерий горизонтально.

Гены плазмид, в свою очередь, могут перекочевывать на хромосомы клеток-реципиентов. Считают, что таким путем в кишечную палочку попали гены, кодирующие ферменты инактивации антибиотиков (Кордюм, 1982; Хесин, 1984). Возникает вопрос, откуда взялись первые гены устойчивости к антибиотикам? Получены факты в пользу гипотезы, что эти гены впервые появились у почвенных бактерий, живущих рядом с грибами-продуцентами антибиотиков. В почвенных бактериях в плазмидном состоянии находятся детерминанты устойчивости к тяжелым металлам. Из природных резерватов плазмиды с транспозонами, несущие гены устойчивости, попадают к бактериям животных и человека и с помощью их распространяются по всему миру.

Замечательное подтверждение этой идеи получено в последней работе Р. Б. Хесина, посвященной распространению факторов резистентности к ртути у бактерий и других живых организмов, выделенных в районе ртутно-сурьмяного месторождения в Киргизии. Плазмиды с детерминантами устойчивости найдены у почвенных бактерий в центре рудника. И в этой же зоне плазмиды обнаружены у энтеробактерий, выделенных из кишечника живых домовых мышей и зеленых жаб. Таким образом, получено опытное доказательство, что "участки, содержащие яды, послужили центрами происхождения плазмид-факторов резистентности... Можно предполагать, что бактериальные сообщества в природе, несущие плазмиды, служат природными очагами, где они постоянно поддерживаются, и оттуда они систематически поступают через цепи бактерий и животных — переносчиков к человеку" (Хесин, 1985).

Секвенирование геномов и их сравнительный анализ (геномика) у бактерий показывают большую роль горизонтального переноса в круговороте ДНК в природе. Полностью расшифрованный в 2000 году геном холерной бактерии Vibrio cholera состоит из двух кольцевых хромосом. Большая хромосома имеет длину в 2 961 146 п. н., а малая — 1 072 314 п. н. Как показал сравнительный анализ, основные гены жизнеобеспечения сосредоточены в большой хромосоме, а малая хромосома рассматривается как "мегоплазмида, захваченная одним из предковых видов рода Vibrio" (Heidelberg, et al., 2000). Таким образом, холерный вибрион напоминает систему земля — луна. В хромосоме-мегаплазмиде находят комплексы генов, обеспечивающих горизонтальный перенос или так называемые "факторы колонизации", гены вирулентности и устойчивости к антибиотикам. В мегаплазмиде собирались гены из разных бактерий, прежде чем она была захвачена холерным вибрионом. В природных условиях непатогенные бактерии рода Vibrio живут в эстуариях рек и солоноватых водах и относятся к зоопланктону. Патогенность холерного вибриона — результат его "одомашнивания" и вхождения в новую экологическую нишу после захвата мегаплазмиды, ставшей из факультативного облигатным компонентом генома, так как в нее перешли некоторые облигатные гены.

Пожалуй, самым замечательным из известных примеров природной генетической инженерии является симбиоз между почвенными бактериями рода Agrobacterium и двудольными растениями. Бактерия А. tumefaciens вызывает опухолевое разрастание — корончатые галлы на границе стебля и корня. А бактерия A. rhizogenes вызывает заболевание "бородатый корень" — сверхнормальное разрастание корней в пораненном участке, инфицированном бактерией. Оба феномена были известны еще с начала века, но расшифрованы лишь в 80-е годы и были образно и точно названы "генетическая колонизация".

Галлы и разрастания вызываются горизонтальным переносом — встраиванием в клетки корня растения-хозяина опухолеродного мультигенного сегмента ДНК из плазмид, которые как факультативный элемент содержатся в природных популяциях бактерий. Опухоль синтезирует производные аргинина, которых нет у растения-хозяина и структура которых полностью определяется штаммом бактерий. Они необходимы для роста бактерий. Agrobacterium представляет собой утонченного паразита, заставляя зараженное растение (посредством встраивания в геном растения своих генов) превращать часть его запасов аргинина в питательные компоненты, которые инфицирующая бактерия избирательно усваивает (Гейзен и др., 1990).

Поразительно, замечают авторы, что в то самое десятилетие, когда человек начал работать с бактериями с целью заставить их синтезировать животные белки, была обнаружена природная генно-инженерная система, позволяющая бактериям передавать свою ДНК и колонизировать их. С эволюционно генетических позиций поразительно и то, что (а) у обоих видов бактерий, вызывающих галлы и "бородатые корни", опухоли связаны с кольцевыми плазмидами бактерий и с встраиванием части ДНК из этой плазмиды в хромосомы растения-паразита; (б) сами плазмиды из двух видов бактерий совершенно несходны между собой по составу ДНК; иными словами, сценарий генетической колонизации возникал в эволюции независимо и неоднократно. Теперь исследователи успешно пытаются "приручить" созданные природой инструменты для направленной генетической трансформации растений, благо фитопатогенные бактерии рода Agrobacterium относятся к семейству клубеньковых бактерий Rhizobiaceaea, столь важным для увеличения фиксации азота у культурных растений (Генетические основы селекции клубеньковых бактерий, 1990).

Горизонтальная передача генов и их блоков, опосредованная транспозонами и плазмидами, может быть сравнима с передачей от одного народа к другому крупных инженерных изобретений. Особенно велика роль плазмидной миграции генов в случае приобретения у бактерий устойчивости к антибиотикам и способности к санации окружающей среды от биосферных и антропогенных загрязнителей. Так ли уж парадоксален вывод Р. Б. Хесина (1984, с. 104), что не будь в природе плазмид, не было бы не только многих видов бактерий, но и нас, "поскольку мы бы уже отравились продуктами своей мощной химической промышленности, которые бы не обезвреживались бактериями".





Дата публикования: 2014-11-29; Прочитано: 1035 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.011 с)...