Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Моменты распределения и средние молекулярные массы



Определение понятия средней ММ полимера при непрерывном распределении базируется на теории случайных величин, каковыми и являются значения ММ макромолекул для большинства полимеризационных процессов. В теории случайных величин существует понятие момента распределения случайной величины ω, который, применительно к рассматриваемому случаю, выражается следующим образом:

(1.8)

где n - любое целое число.

По определению, отношение любого момента к предыдущему равно среднему значению случайной величины:

(1.9)

Таким образом, согласно теории случайных величин, существует множество значений средних ММ полидисперсного полимера с непрерывным распределением. Практически используют первые три члена ряда средних ММ:

(1.10)

(1.11)

. (1.12)

тогда

(1.13)

Далее, учитывая (1.7) и (1.13), получаем

(1.14)

Выражение (1.13) по содержанию аналогично (1.5), следовательно, первое выражает среднейисловую ММ. То же самое можно сказать о (1.14) и (1.6), следовательно, (1.14) выражает среднемассовую ММ полимера. называется z - средней или среднеседиментационной ММ. Эта характеристика не имеет такого наглядного истолкования, как среднечисловая и среднемассовая ММ.

Величины , , находятся экспериментально. Так, определяется через так называемые коллигативные свойства растворов полимеров, т.е. методами осмометрии, эбуллиоскопии, криоскопии, а также по концевым группам; определяется методами светорассеяния, седиментации и гель-хроматографии, - методом равновесной седиментации. На практике широкое распространение получил вискозиметрический метод определения ММ, который приводит к средневязкостной ММ - , близкой к .





Дата публикования: 2014-11-18; Прочитано: 681 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2025 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.005 с)...