Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | ||
|
Следует сразу же отметить, что принципиальной разницы между многофакторным и однофакторным ДА нет. Многофакторный анализ не меняет общую логику ДА, а лишь несколько усложняет ее, поскольку, кроме учета влияния на зависимую переменную каждого из факторов по отдельности, следует оценивать и их совместное действие. Таким образом, то новое, что вносит в анализ данных многофакторный дисперсионный анализ, касается в основном возможности оценить межфакторное взаимодействие. Тем не менее, по-прежнему остается возможность оценивать влияние каждого фактора в отдельности. В этом смысле процедура многофакторного ДА (в варианте ее компьютерного использования) несомненно более экономична, поскольку всего за один запуск решает сразу две задачи: оценивается влияние каждого из факторов и их взаимодействие.
Общая схема двухфакторного эксперимента, данные которого обрабатываются ДА имеет вид:
Рисунок 1.1 – Схема двухфакторного эксперимента
Предположив, что в рассматриваемой задаче о качестве различных m партий изделия изготавливались на разных t станках и требуется выяснить, имеются ли существенные различия в качестве изделий по каждому фактору:
А - партия изделий;
B - станок.
В результате получается переход к задаче двухфакторного ДА.
Все данные представлены в таблице 1.2, в которой по строкам - уровни Ai фактора А, по столбцам — уровни Bj фактора В, а в соответствующих ячейках, таблицы находятся значения показателя качества изделий xijk (i=1,2,...,m; j=1,2,...,l; k=1,2,...,n).
Таблица 1.2 – Показатели качества изделий
B1 | B2 | … | Bj | … | Bl | |
A1 | x11l,…,x11k | x12l,…,x12k | … | x1jl,…,x1jk | … | x1ll,…,x1lk |
A2 | x21l,…,x21k | x22l,…,x22k | … | x2jl,…,x2jk | … | x2ll,…,x2lk |
… | … | … | … | … | … | … |
Ai | xi1l,…,xi1k | xi2l,…,xi2k | … | xijl,…,xijk | … | xjll,…,xjlk |
… | … | … | … | … | … | … |
Am | xm1l,…,xm1k | xm2l,…,xm2k | … | xmjl,…,xmjk | … | xmll,…,xmlk |
Двухфакторная дисперсионная модель имеет вид:
xijk=μ+Fi+Gj+Iij+εijk, (15)
где xijk - значение наблюдения в ячейке ij с номером k;
μ - общая средняя;
Fi - эффект, обусловленный влиянием i-го уровня фактора А;
Gj - эффект, обусловленный влиянием j-го уровня фактора В;
Iij - эффект, обусловленный взаимодействием двух факторов, т.е. отклонение от средней по наблюдениям в ячейке ij от суммы первых трех слагаемых в модели (15);
εijk - возмущение, обусловленное вариацией переменной внутри отдельной ячейки.
Предполагается, что εijk имеет нормальный закон распределения N(0; с2), а все математические ожидания F*, G*, Ii*, I*j равны нулю.
Групповые средние находятся по формулам:
- в ячейке:
,
- по строке:
по столбцу:
общая средняя:
В таблице 1.3 представлен общий вид вычисления значений, с помощью дисперсионного анализа.
Таблица 1.3 – Базовая таблица дисперсионного анализа
Компоненты дисперсии | Сумма квадратов | Число степеней свободы | Средние квадраты |
Межгрупповая (фактор А) | m-1 | ||
Межгрупповая (фактор B) | l-1 | ||
Взаимодействие | (m-1)(l-1) | ||
Остаточная | mln - ml | ||
Общая | mln - 1 |
Проверка нулевых гипотез HA, HB, HAB об отсутствии влияния на рассматриваемую переменную факторов А, B и их взаимодействия AB осуществляется сравнением отношений , , (для модели I с фиксированными уровнями факторов) или отношений , , (для случайной модели II) с соответствующими табличными значениями F – критерия Фишера – Снедекора. Для смешанной модели III проверка гипотез относительно факторов с фиксированными уровнями производится также как и в модели II, а факторов со случайными уровнями – как в модели I.
Если n=1, т.е. при одном наблюдении в ячейке, то не все нулевые гипотезы могут быть проверены так как выпадает компонента Q3 из общей суммы квадратов отклонений, а с ней и средний квадрат , так как в этом случае не может быть речи о взаимодействии факторов.
С точки зрения техники вычислений для нахождения сумм квадратов Q1, Q2, Q3, Q4, Q целесообразнее использовать формулы:
Q3 = Q – Q1 – Q2 – Q4.
Отклонение от основных предпосылок ДА— нормальности распределения исследуемой переменной и равенства дисперсий в ячейках (если оно не чрезмерное) — не сказывается существенно на результатах ДА при равном числе наблюдений в ячейках, но может быть очень чувствительно при неравном их числе. Кроме того, при неравном числе наблюдений в ячейках резко возрастает сложность аппарата ДА. Поэтому рекомендуется планировать схему с равным числом наблюдений в ячейках, а если встречаются недостающие данные, то возмещать их средними значениями других наблюдений в ячейках. При этом, однако, искусственно введенные недостающие данные не следует учитывать при подсчете числа степеней свободы.
ДА подобно t-критерию Стьюдента, позволяет оценить различия между выборочными средними; однако, в отличие от t-критерия, в нем нет ограничений на количество сравниваемых средних. Таким образом, вместо того, чтобы поставить вопрос о различии двух выборочных средних, можно оценить, различаются ли два, три, четыре, пять или k средних.
ДА позволяет иметь дело с двумя или более независимыми переменными (признаками, факторами) одновременно, оценивая не только эффект каждой из них по отдельности, но и эффекты взаимодействия между ними, поэтому позволяет проверять более сложные гипотезы.
Еще одно преимущество ДА по сравнению с обычным t-критерием для двух выборок: ДА позволяет изучать каждый фактор, управляя значениями других факторов. Это является основной причиной его большей статистической мощности (для получения значимых результатов требуется меньшие объемы выборок).
ДА определяет, есть ли эффект.
Слишком большая размерность выборок затрудняет проведение статистических анализов, поэтому имеет смысл уменьшить размер выборки.
Применив ДА можно выявить значимость влияния различных факторов на исследуемую переменную. Если влияние фактора окажется несущественным, то этот фактор можно исключить из дальнейшей обработки.
Модели ДА со случайными факторами неустойчивы к нарушениям предположений о нормальности и независимости эффектов случайных факторов. Эти нарушения могут привести к ошибкам при проверке гипотез.
Дата публикования: 2014-11-18; Прочитано: 1509 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!