Студопедия.Орг Главная | Случайная страница | Контакты | Мы поможем в написании вашей работы!  
 

Представление(кодирование) чисел



Для записи информации о количестве объектов используются числа. Числа записываются с помощью набора специальных символов.

Система счисления — способ записи чисел с помощью набора специальных знаков, называемых цифрами.

Системы счисления подразделяются на позиционные и непозиционные.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её положения в числе (позиции).

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе.

Непозиционные системы счисления.

Каноническим примером фактически непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы: I обозначает 1, V - 5, X - 10, L - 50, C - 100, D - 500, M -1000. Натуральные числа записываются при помощи повторения этих цифр. При этом, если большая цифра стоит перед меньшей, то они складываются (принцип сложения), если же меньшая — перед большей, то меньшая вычитается из большей (принцип вычитания). Последнее правило применяется только во избежание четырёхкратного повторения одной и той же цифры.

Например, II = 1 + 1 = 2, здесь символ I обозначает 1 независимо от места в числе.

Для правильной записи больших чисел римскими цифрами необходимо сначала записать число тысяч, затем сотен, затем десятков и, наконец, единиц.

Пример: число 1988. Одна тысяча M, девять сотен CM, восемьдесят LXXX, восемь VIII. Запишем их вместе: MCMLXXXVIII.

MCMXCVIII = 1000+(1000-100)+(100-10)+5+1+1+1 = 1998

Позиционные системы счисления.

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её положения в числе (позиции). Количество используемых цифр называется основанием системы счисления.

Самой первой такой системой, когда счетным "прибором" служили пальцы рук, была пятеричная.

Следующей после пятеричной возникла двенадцатеричная система счисления. Возникла она в древнем Шумере. Некоторые учёные полагают, что такая система возникала у них из подсчёта фаланг на руке большим пальцем. Широкое распространение получила двенадцатеричная система счисления в XIX веке.

Следующая позиционная система счисления была придумана еще в Древнем Вавилоне, причем вавилонская нумерация была шестидесятеричная, т.е. в ней использовалось шестьдесят цифр! В более позднее время использовалась арабами, а также древними и средневековыми астрономами. Шестидесятеричная система счисления, как считают исследователи, являет собой синтез уже вышеупомянутых пятеричной и двенадцатеричной систем.

В настоящее время наиболее распространены десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления. Двоичная, восьмеричная (в настоящее время вытесняется шестнадцатеричной) и шестнадцатеричная система часто используется в областях, связанных с цифровыми устройствами, программировании и вообще компьютерной документации. Современные компьютерные системы оперируют информацией представленной в цифровой форме. Числовые данные преобразуются в двоичную систему счисления.

Система счисления Основание Алфавит цифр
Десятичная   0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Двоичная   0, 1
Восьмеричная   0, 1, 2, 3, 4, 5, 6, 7
Шестнадцатеричная   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Десятичная система счисления — позиционная система счисления по основанию 10. Предполагается, что основание 10 связано с количеством пальцев рук у человека. Наиболее распространённая система счисления в мире. Для записи чисел используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называемые арабскими цифрами.

Двоичная система счисления — позиционная система счисления с основанием 2. Используются цифры 0 и 1. Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и удовлетворяет требованиям:

· Чем меньше значений существует в системе, тем проще изготовить отдельные элементы.

· Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать.

· Простота создания таблиц сложения и умножения — основных действий над числами

Укажем соответствие десятичной, двоичной, восьмеричной и шестнадцатеричной систем счисления в таблице.

p=10                                  
p=2                                  
p=8                                  
p=16                     A B C D E F  

При одновременной работе с несколькими системами счисления для их различения основание системы обычно указывается в виде нижнего индекса, который записывается в десятичной системе:

12310 — это число 123 в десятичной системе счисления;

11110112 — то же число, но в двоичной системе.

Двоичное число 1111011 можно расписать в виде: 11110112 = 1*26 + 1*25 + 1*24 + 1*23 + 0*22 + 1*21 + 1*20.

Двоичная система счисления обладает такими же свойствами, что и десятичная, только для представления чисел используются не 10 цифр, а всего две. Соответственно и разряд числа называют не десятичным, а двоичным.

Перевод из десятичной системы счисления в систему счисления с основанием p осуществляется последовательным делением десятичного числа и его десятичных частных на p, а затем выписыванием последнего частного и остатков в обратном порядке.

Переведем десятичное число 2010 в двоичную систем счисления (основание системы счисления p=2). В итоге получили 2010 = 101002.


Двоичное кодирование текстовой информации

Начиная с 60-х годов, компьютеры все больше стали использовать для обработки текстовой информации и в настоящее время большая часть ПК в мире занято обработкой именно текстовой информации.

Традиционно для кодирования одного символа используется количество информации = 1 байту (1 байт = 8 битов).

Для кодирования одного символа требуется один байт информации.

Учитывая, что каждый бит принимает значение 1 или 0, получаем, что с помощью 1 байта можно закодировать 256 различных символов. (28 = 256)

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный двоичный код от 00000000 до 11111111 (или десятичный код от 0 до 255).

Важно, что присвоение символу конкретного кода – это вопрос соглашения, которое фиксируется кодовой таблицей.

Таблица, в которой всем символам компьютерного алфавита поставлены в соответствие порядковые номера (коды), называется таблицей кодировки.

Для разных типов ЭВМ используются различные кодировки. С распространением IBM PC международным стандартом стала таблица кодировки ASCII (A merican S tandard C ode for I nformation I nterchange) – Американский стандартный код для информационного обмена.

Стандартной в этой таблице является только первая половина, т.е. символы с номерами от 0 (00000000) до 127 (0111111). Сюда входят буква латинского алфавита, цифры, знаки препинания, скобки и некоторые другие символы.

Остальные 128 кодов используются в разных вариантах. В русских кодировках размещаются символы русского алфавита.

В настоящее время существует 5 разных кодовых таблиц для русских букв (КОИ8, СР1251, СР866, Mac, ISO).

В настоящее время получил широкое распространение новый международный стандарт Unicode, который отводит на каждый символ два байта. С его помощью можно закодировать 65536 (216= 65536) различных символов.

Таблица стандартной части ASCII

Таблица расширенного кода ASCII (один из вариантов)

Сегодня очень многие люди для подготовки писем, документов, статей, книг и пр. используют компьютерные текстовые редакторы. Компьютерные редакторы, в основном, работают с алфавитом размером 256 символов.

В этом случае легко подсчитать объем информации в тексте. Если 1 символ алфавита несет 1 байт информации, то надо просто сосчитать количество символов; полученное число даст информационный объем текста в байтах.

Пусть небольшая книжка, сделанная с помощью компьютера, содержит 150 страниц; на каждой странице — 40 строк, в каждой строке — 60 символов. Значит страница содержит 40x60=2400 байт информации. Объем всей информации в книге: 2400 х 150 = 360 000 байт.

Обратите внимание! Цифры кодируются по стандарту ASCII в двух случаях – при вводе-выводе и когда они встречаются в тексте. Если цифры участвуют в вычислениях, то осуществляется их преобразование в другой двоичных код.

Возьмем число 57.

При использовании в тексте каждая цифра будет представлена своим кодом в соответствии с таблицей ASCII. В двоичной системе это – 00110101 00110111.

При использовании в вычислениях, код этого числа будет получен по правилам перевода в двоичную систему и получим – 00111001.





Дата публикования: 2014-11-18; Прочитано: 2460 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!



studopedia.org - Студопедия.Орг - 2014-2024 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.006 с)...