![]() |
Главная Случайная страница Контакты | Мы поможем в написании вашей работы! | |
|
Проблема достоверности наших представлений об окружающем мире, т.е. проблема соответствия модели объекта и реального объекта, является ключевой проблемой в теории познания. В настоящее время общепринято, что критерием истинности наших знаний является опыт. Модель адекватна объекту, если результаты теоретических исследований (расчёт) совпадают с результатами опыта (измерений) в пределах погрешности последнего.
Погрешности имеют место не только при измерениях, но и при теоретическом моделировании. Для теоретических моделей, в соответствии с природой возникновения, будем различать:
- погрешности, возникающие при разработке физической модели;
- погрешности, возникающие при составлении математической модели;
- погрешности, возникающие при анализе математической модели;
- погрешности, связанные с конечным числом разрядов чисел при вычислениях.
В последнем случае, например, число π в рамках символической записи как отношение длины окружности к диаметру представляет собой точное число, но попытка записать его в численном виде (π=3,14159265…) вызывает погрешность, связанную с конечным числом разрядов.
Перечисленные погрешности возникают всегда. Избежать их невозможно, и их называются методическими. При измерениях методические погрешности проявляют себя как систематические.
Пример: погрешности физической и математической модели маятника, возникающие при измерении периода колебаний маятника в виде тела, подвешенного на нити.
Физическая модель маятника:
- нить – невесома и нерастяжима;
- тело – материальная точка;
- трение отсутствует;
- тело совершает плоское движение;
- гравитационное поле – однородное (т.е. g =const во всех точках пространства, в которых находится тело);
- влияние других тел и полей на движение тела отсутствует.
Очевидно, что реальное тело не может быть материальной точкой, оно имеет объем и форму, в процессе движения или со временем тело деформируется. Кроме того, нить имеет массу, она обладает упругостью и также деформируется. На движение маятника влияет движение точки подвеса, обусловленное действием вибраций, всегда имеющих место. Также на движение маятника влияет сопротивление воздуха, трение в нити и способ ее крепления, внешние магнитное и электрическое поля, неоднородность гравитационного поля Земли и даже влияние гравитационного поля Луны, Солнца и окружающих тел.
Перечисленные факторы, в принципе, могут быть учтены, однако сделать это достаточно трудно. Для этого потребуется привлечь почти все разделы физики. В конечном счете, учет этих факторов значительно усложнит физическую модель маятника и ее анализ. Не учет перечисленных, а также множества других, не упомянутых здесь факторов, существенно упрощает анализ, но приводит к погрешностям исследования.
Математическая модель маятника:
в рамках выбранной простейшей физической модели математическая модель маятника – дифференциальное уравнение движения маятника – имеет следующий вид:
, (1), где L – длина нити; φ – отклонение тела от положения равновесия.
При φ<<1 обычно считают, что sin φ»φ, и тогда уравнение движения записывается: .(2)
Это – линейное дифференциальное уравнение, которое может быть решено точно. Данноерешение имеет вид , где
. Отсюда следует, что период колебаний маятника Т 0=2p/w0 не зависит от амплитуды φ0. Однако, это решение нельзя считать точным решением задачи о колебаниях маятника, представленного простейшей физической моделью, поскольку исходное уравнение (1) было другим.
Можно уточнить решение. Если разложить sin φ в ряд и учесть хотя бы первые два члена разложения, т.е. считать, что sinφ»φ+φ3/6, то решение дифференциального уравнения существенно усложнится. Приближенно его можно записать в виде , где
. Отсюда следует, что в данном приближении период колебаний маятника Т =2p/w зависит от амплитуды колебаний по параболическому закону.
Таким образом, погрешность математической модели (уравнение (2)), связанная с заменой sin φ на φ, приводит к погрешности результата расчета периода колебаний маятника. Оценка этой погрешности может быть получена из решения задачи во втором приближении.
Проблема построения и анализа математической модели объекта исследования с заданной точностью, а также оценка погрешности расчётов в ряде случаев очень сложна. Требуется высокая математическая культура исследователя, необходим тщательный математический анализ и самой модели, и применяемых методов решения.
Например, не имеет смысла требование решения уравнения (1) с точностью, существенно превышающей точность построения физической модели. В частности, в предыдущем примере нет смысла делать замену sinφ»φ+φ3/6 вместо sinφ»φ, если нить заметно деформируется или сопротивление воздуха велико.
Применение ЭВМ значительно увеличило возможности построения и исследования математических моделей в технике, однако не следует думать, что совершенное знание математики, численных методов и языков программирования позволит решить любую физическую и прикладную задачу. Дело в том, что даже самые изящные и точные методы расчетов не могут исправить ошибки, допущенные при построении физической модели. Действительно, если длина L не постоянна, или если размеры тела сопоставимы с длиной нити, или трение велико и колебания маятника быстро затухают, то даже абсолютно точное решение уравнения (1) не позволит получить точное решение задачи о колебаниях маятника.
Общая характеристика понятия “измерение”
(сведения из метрологии)
В метрологии определение понятия “измерение” даёт ГОСТ 16.263-70.
Измерение – научно обоснованный опыт для получения количественной информации с требуемой или возможной точностью о параметрах объекта измерения.
Измерение включает в себя следующие понятия:
- объект измерения;
- цель измерения;
- условия измерения (совокупность влияющих величин, описывающих состояние окружающей среды и объектов);
- метод измерения, т.е. совокупность приёмов использования принципов и средств измерений (принцип измерения – совокупность физических явлений, положенных в основу измерения);
- методика измерения, т.е. установленная совокупность операций и правил, выполнение которых обеспечивает получение необходимых результатов в соответствии с данным методом.
- средства измерения:
▪ измерительные преобразователи,
▪ меры,
▪ измерительные приборы,
▪ измерительные установки,
▪ измерительные системы,
▪ измерительно-информационные системы;
- результаты измерений;
- погрешность измерений;
- понятия, характеризующие качество измерений:
▪ достоверность (характеризуется доверительной вероятностью, т.е. вероятностью того, что истинное значение измеряемой величины находится в указанных пределах);
▪ правильность (характеризуется значением систематической погрешности);
▪ сходимость (близость друг к другу результатов измерений одной и той же величины, выполняемых повторно одними и теми же методами и средствами и в одних и тех же условиях; отражает влияние случайных погрешностей на результат);
▪ воспроизводимость (близость друг к другу результатов измерений одной и той же величины, выполняемых в разных местах, разными методами и средствами, но приведенных к одним и тем же условиям).
Дата публикования: 2014-11-18; Прочитано: 501 | Нарушение авторского права страницы | Мы поможем в написании вашей работы!